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Abstract

We describe how we have parallelized Python, an in-
terpreted object oriented scripting language, and used it
to build an extensible message-passing molecular dynam-
ics application for the CM-5, Cray T3D, and Sun multi-
processor servers running MPI. This allows us to interact
with large-scale message-passing applications, rapidly pro-
totype new features, and perform application specific de-
bugging. It is even possible to write message passing pro-
grams in Python itself. We describe some of the tools we
have developed to extend Python and results of this ap-
proach.

1 Introduction

One of the greatest problems encountered when work-
ing with massively parallel machines is the complexity of
software development, the difficulty of building flexible ap-
plications, parallel debugging, and dealing with the massive
amounts of data that can be generated by large-scale parallel
applications. Given the complexity of working with paral-
lel machines, there is tendency to develop parallel “problem
solving environments” that attempt to hide all of the under-
lying complexity by relying on sophisticated object oriented
programming frameworks, software libraries, or language
extensions. Unfortunately, we feel that this tends to result
in large monolithic software systems that are too compli-
cated to adapt to new uses, difficult to integrate with existing
code, and almost impossible to debug (since the user is ef-
fectively isolated from all of the underlying implementation
details). For scientific computing research applications, this
is simply unacceptable. Research codes need to be simple
to modify and use. It must be possible to understand exactly
what is going on inside the code in order to verify correct
operation (and to fully understand the experiment!).

In this paper, we describe how we have parallelized
Python to serve as a “glue language” for building highly
modular and component based parallel applications. The
resulting system serves as the basis for developing exten-
sible and flexible parallel codes without relying on a large
software infrastructure or parallel computing framework. It
also provides us with a nice debugging, prototyping, and
user environment. While interpreted languages have often
been considered to be too slow for “serious” work, we will
illustrate how we have used the Python language with a
large-scale molecular dynamics application (SPaSM) with-
out suffering a performance penalty or significantly increas-
ing software complexity.

2 The Python Language

Python is an interpreted object oriented scripting lan-
guage developed by Guido van Rossum, at CWI, Amster-
dam [1, 2]. It has been increasing in popularity and is of-
ten compared to languages such as Tcl/Tk and Perl [3, 4].
For controlling parallel applications, we wanted to provide
a command driven model similar to that used in scien-
tific packages such as Mathematica, MATLAB, or IDL. We
chose Python to serve in this role for a variety of reasons :

� It is highly portable and runs under UNIX, MacOS,
and Windows.

� The language is built around a small extensible core.
This makes it easier to port to parallel machines.

� It has a clean syntax that is easy to read and easy to
learn.

� Python can be run interactively.

� It is easy to build C/C++ extensions to Python.

� A large number of extension modules are already
available.



� It is fully object oriented, making it possible to write
powerful extensions.

� The language has seen increased use in the scientific
community and has a number of numerical extensions
[5, 6].

� Python is free and well supported.

� We like it.

More information about Python can be found on the in-
ternet, or the book “Programming Python” by Mark Lutz
[2]. While a full treatment of the language is not possible
here, the syntax is easily understood. The remainder of this
paper will focus primarily on our use of Python rather than
the language itself.

3 Parallelizing Python

Within a message passing environment, parallelizing the
Python interpreter involves being able to safely running a
copy of Python on every processor. Like C or Fortran, pro-
cessors may only be loosely synchronized and will execute
code independently unless message passing calls are in-
volved. However, unlike C or Fortran, Python itself is writ-
ten in C and uses the the Cstdio library for many oper-
ations, including reading scripts from files, importing mod-
ules, getting input from the user, and writing byte-compiled
versions of modules back to disk. Given the state of parallel
I/O support on most machines, this presents a serious porta-
bility and usability problem. We need to make sure that
Python can run properly on all processors without crashing
during I/O operations. At the same time, we don’t want to
have to modify significant portions of the Python source.

In addressing the I/O problems, we assume that all I/O
takes place on a common file system and that files may be
shared between multiple processors simultaneously. This is
the model most commonly found on large parallel machines
and multi-processor servers. It may not be the model on
distributed workstation clusters or heterogeneous systems,
but the techniques we describe could still be applied (with
modification) to those systems.

3.1 Remapping I/O Functions in Python

To remap the I/O operations used in Python, we have
written a special C header filepstdio.h . This file is in-
cluded into the Python header files prior to the inclusion of
the Cstdio.h header file. This remaps all of the stdio op-
erations to a collection of “wrapper” functions that we will
implement in a manner similar to that described in [7].

/* pstdio.h : Wrappers around stdio.h
for parallel I/O */

#define fopen PIO_fopen
#define fflush PIO_fflush
#define fclose PIO_fclose
#define rename PIO_rename
#define setvbuf PIO_setvbuf
#define fread PIO_fread
#define fwrite PIO_fwrite
#define fprintf PIO_fprintf
#define fgets PIO_fgets
#define fputc PIO_fputc
#define fputs PIO_fputs
#define printf PIO_printf
#define fseek PIO_fseek
#define ftell PIO_ftell
#define read PIO_read
#define write PIO_write
#define open PIO_open
#define close PIO_close

3.2 Implementation of Wrapper Functions

The I/O wrapper functions are implemented using a
combination of the Cstdio library and message passing
operations. File descriptors are managed in two different
I/O modes :

� BROADCAST. In this mode, processor 0 reads data
and broadcasts it to all of the other nodes. When writ-
ing, output is assumed to come from only one proces-
sor (usually processor 0, but this can be remapped).
This mode is primarily used for handling interactive
I/O usingstdin andstdout .

� BROADCAST WRITE . This mode allows all pro-
cessors to read data independently, but only one pro-
cessor can write data. This mode is used for most file
operations in Python. For example, when reading a
script, every node can simply open the file and pro-
cess its contents independently. By restricting write
access, we eliminate problems that occur when multi-
ple copies of Python attempt to write to the same file
(which would normally result in garbage). This mode
is somewhat faster than the normal broadcast mode
since it is not necessary for processor 0 to broadcast
input data to the other nodes.

Currently, we have implemented the wrappers under
CMMD on the CM-5, the shared memory library on the
T3D, and MPI [8, 9, 10]. Eventually, we would hope to
implement the library using parallel I/O libraries such as
MPI-IO [11].

3.3 Other Changes to Python

Finally, three other changes were required to the Python
core.



� A putc() call was changed tofputc() since it
could not be remapped otherwise (sinceputc() is
implemented as a C macro).

� A switch was installed to disable dynamic loading of
modules. While supported on most workstations, this
capability is not available on larger machines such as
the CM-5 or Cray T3D.

� An initialization call was added to Python’s main()
program. This is sometimes needed to initialize MPI
and other packages.

3.4 Compilation

The I/O remappings and minor fixes required less than
10 lines of modifications to the entire Python source (con-
sisting of more than 50000 lines of C code). The I/O wrap-
pers have been implemented in about 1000 lines of support-
ing ANSI C. Together with the Python source, everything is
combined into new version of the Python interpreter and a
C library for embedding a parallelized version of Python in
other applications.

4 Using SWIG to Build Python Extensions

While Python is designed to be easily integrated with
C/C++ code, doing so requires one to write special “wrap-
per” functions that provide the glue between the under-
lying C function and the Python interpreter. Since the
process of writing these wrapper functions is tedious, we
have developed a tool, SWIG, that automatically generates
the Python bindings from a file containing ANSI C/C++
declarations[12]. Using SWIG, the user extends Python by
writing an interface file such as the following :

%module spasm
%{
#include "spasm.h"
%}
...
void ic_shock(int nx, int ny, int nz, double vel,

double width, double gap,
double temp, double r0,
double cutoff);

int timesteps(int nsteps, int energy_n,
int output_n, int checkp_n);

void set_boundary_periodic();
void set_boundary_free();
void energy();

// Different potential energy methods

void init_lj(double epsilon, double sigma,
double cutoff);

void init_table_pair();
...

All of the functions in this file turn into Python com-
mands that can be used in scripts or typed interactively.
SWIG supports almost all C/C++ datatypes, C structures,
and a subset of C++. As a result, it is relatively easy to add
new capabilities to the Python interpreter.

5 An Extensible Molecular Dynamics Code

Since 1992, we have been developing a short-range
molecular dynamics code, SPaSM, for use on the Connec-
tion Machine 5 and Cray T3D systems at Los Alamos Na-
tional Laboratory [13]. This code is capable of performing
production simulations with more than 100 million atoms,
yet managing such simulations in practice has proven to
be nearly impossible—primarily due to the overwhelming
amount of data generated, the difficulty of debugging and
development, and the lack of analysis tools.

To address these problems, we have adopted the idea of
“computational steering” and reorganized the code with a
focus on modularity and integration of various components
such as data analysis, visualization, and simulation [14, 15,
16]. Python serves as the glue of this system.

Rather than having a large monolithic application, the
new organization features a collection of loosely organized
modules. Most of the functionality is found in a collection
of C library files for running simulations, performing data
analysis, message passing and other things. A collection
of Python scripts are also available. These scripts perform
common tasks, and form the foundation of an object ori-
ented visualization system we are developing.

The user provides C code for initial conditions, boundary
conditions, numerical integration methods, and any prob-
lem specific features. While this code relies heavily on the
base set of C libraries, it is completely independent of the
Python interface (and can, in fact, be compiled without it).
However, if the user would like to use Python, they simply
write a SWIG interface file containing their functions. Sim-
ulation scripts and new functionality can also be written in
Python as needed.

5.1 Extending and Controlling the System

The interface to the SPaSM code is built automatically
using SWIG. As a result, one simply declares various C
functions which automatically appear as Python commands
when the code is compiled. After compilation, the code can
be controlled with scripts such as the following :

# Shock wave problem (Python script)
nx = 15
ny = 15
nz = 50
shock_velocity = 8.5
temp = 0.1



width = 0.3333
r0 = 1.0901733
gap = 0.10
cutoff = 2.0
Dt = 0.0025

ic_shock(nx,ny,nz,shock_velocity,width,gap,temp,
r0,cutoff)

init_lj(1,1,cutoff)
set_boundary_periodic()
set_path("/sda/sda1/beazley/shock2")
timesteps(10000,25,25,500)

When new functionality is needed, an ordinary C func-
tion can be written and its prototype placed into the inter-
face file. Since no Python specific code is involved, any
new functionality is easy to re-use in other kinds of C/C++
applications (even if they don’t involve Python).

5.2 Interactive Simulation

Since Python is interpreted, it is possible to run SPaSM
in an interactive mode. In this mode, the user is presented
with a single prompt even though tens to hundreds of copies
of the interpreter are running (our parallel I/O wrappers
make this possible). Any commands typed by the user are
executed in a pure SPMD mode with execution taking place
on all processors. This environment is particularly useful
for setting up problems and examining the state of a simu-
lation. Here is a sample session :

.cm5-5 {106} > SPaSM -p4:4:2
SPaSM 3.0 (alpha) ==== Run 190 on cm5-5 ==== Wed!

Using Python 1.3 (Sep 8 1996) [GCC 2.6.3]
Copyright 1991-1995 Stichting Mathematisch Centr!

SPaSM > ic_test()
Setting up test initial condition.
23776 particles created.
SPaSM > from vis import *
Setting image server to sleipner port 35219
SPaSM > ke = Spheres(KE,0,20)
SPaSM > ke.draw_processors=1
SPaSM > ke.show()
...
SPaSM > SPaSM_processors(2,4,4)

In the example, the user has set up an initial condition.
A visualization module is then loaded (which attaches to
a user’s workstation). At this point the use can run simu-
lations and analyze data. In this case, a plot showing the
processor layout has been generated as shown in Figure 1.
The user is free to change most aspects of the code at any
time including the layout of processors and other simulation
parameters.

Figure 1. Particles and processor layout

6 Debugging with Python

Since SWIG also provides access to C data structures,
it is possible to access the underlying data structures in
our simulation directly. For example, the algorithm used
by SPaSM relies on creating a large collection of small
subcells[13]. We can examine these subcells on each pro-
cessor as shown below. By default, output is from processor
0, but this is easy to change.

SPaSM > c = first_cell()
SPaSM > print c
Cell [ ptr = f3c78, n = 0 ]
SPaSM > max = 0
SPaSM > for i in range(0,Xcells*Ycells*Zcells):

... if c[i].n > max : max = c[i].n
SPaSM > print max
14
SPaSM > pn(5)
(pn 5) SPaSM > print max
16

While this is only a simple example, it is possible to
perform quite sophisticated debugging and diagnostic op-
erations entirely within the Python interpreter. This can be
done without recompiling the C code or quitting a running
simulation. While this type of debugging certainly won’t re-
place existing parallel debuggers, it provides an extremely
powerful application specific debugging capability that can
be used to explore data and examine the system in ways not
commonly found in traditional debuggers.

7 Interpreted Message Passing

One of the most interesting features of this approach is
that it is even possible to add message passing operations
to the Python interpreter itself. Using SWIG, it is possible
to build interfaces to CMMD, PVM, MPI, or other libraries



[10, 17, 8]. This allows Python interpreters to send mes-
sages to each other as would be done in C/C++. The fol-
lowing session shows a user interactively sending a Python
list from processor 0 to all of the other processors using the
PVM library on a Cray T3D.

.t3d {118} > python
Starting Python on 32 processors...
Python 1.3 (Aug 6 1996) [C]
Copyright 1991-1995 Stichting Mathematisch Centr!
>>> from pvm3 import *
>>> execfile("parallel.py")
>>> me = pvm_get_PE(pvm_mytid())
>>> nproc = pvm_gsize("")
>>> if me == 0:
... a = [1,2,3,4]
... else:
... a = [ ]
>>> print a
[1,2,3,4]
>>> if me == 0:
... for i in range(1,nproc):
... pvm_initsend(PvmDataRaw)
... pack_list(a)
... pvm_send(i,1)
... else:
... pvm_recv(0,1)
... a = unpack_list()
>>> pprint(a,range(0,nproc))
pn 0 : [1, 2, 3, 4]
pn 1 : [1, 2, 3, 4]
pn 2 : [1, 2, 3, 4]
...
>>>

As with C,C++, or Fortran, it is still possible to deadlock
the machine and to experience all of the other problems as-
sociated with message passing. However, having an inter-
preted message passing environment is an interesting way
to experiment since it is unnecessary to write any C code
(or to recompile after every code modification).

8 Performance Concerns

Python provides our application with a high degree of
flexibility, but performance is still of great concern. While
it is true that Python runs significantly slower than C, most
of the core functionality of our application is still written in
C. Python is mainly used for control and writing the outer
loop of a large calculation. Table 1 shows some perfor-
mance measurements for a recent simulation in which the
entire outer loop was implemented in Python vs. a simu-
lation implemented entirely in C. Given that the outer loop
takes much less than 1% of the overall CPU cycles, the fact
that it is implemented in Python is of little concern (as con-
firmed by the table).

Atoms/processor C C with Python
13950 98.7 98.9
45000 314.1 314.8
180000 1317.1 1319.0

Table 1. Simulation time of C vs. C with
Python (seconds)

9 Conclusions

We have been using the techniques described in this pa-
per with great success with our molecular dynamics appli-
cation. While it is too early to provide any sort of formal
“user study”, we would like to outline some of the results of
taking this approach :

� Emphasizing code modularity has resulted in a sys-
tem that is more robust, reliable, and flexible.

� Scripting languages such as Python provide an ex-
tremely lightweight mechanism for building interac-
tive parallel applications. The addition of Python to
our code resulted in only a 10% memory overhead
and still permits us to perform very large calcula-
tions. Currently, we are using Python scripts to con-
trol production simulations running on our 512 pro-
cessor CM-5.

� We have recently built an object oriented data analy-
sis and visualization system that is directly integrated
with our simulation code. The high performance
aspects of the system are implemented in C while
the object oriented design is implemented entirely in
Python. This system allows us to remotely visualize
100 million atom datasets from ordinary UNIX work-
stations and standard internet connections. Since vi-
sualization is performed on the parallel machine it-
self, we can make images in only a matter seconds—
not minutes or hours (This work is still in progress
and will be reported elsewhere.)

� Extending the system is now extremely easy. Users
do not need to understand the details of the under-
lying Python implementation and can add new func-
tions by simply declaring them in an interface file.

� This approach has resulted in the reuse of various
software components. For example, the graphics li-
brary we developed for visualizing MD simulations
can be used as a stand alone package in unrelated
projects.

� By eliminating most of the problems of building
highly modular and interactive applications, we have



been able to focus on the real problem at hand—
performing large scale materials science simulations.

By providing a simple set of tools, we have been able
to build an extremely powerful parallel application capable
of dealing with 100 million particle data sets. Yet, we have
we have been able to do this without relying on any sort of
special purpose parallel computing environment, rewriting
all of our C code, sacrificing performance, or making things
unnecessarily complicated. We firmly believe that this is
a model than can be successfully applied to other large-
scale parallel computing applications that demand flexibil-
ity, portability, and high performance. In the future we hope
to extend this system to provide better support for shared
memory architectures.
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11 Software Availability

All of the tools described in this paper are in the pub-
lic domain and available. Python can be obtained from
the Python homepage atwww.python.org . SWIG
is available atwww.cs.utah.edu/ �beazley/SWIG .
The parallel modifications to Python can be obtained by
contacting the authors.
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