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Abstract

We present timings and performance numbers for
a new short range three dimensional (3D) molecu-
lar dynamics (MD) code, SPaSM, on the Connection
Machine-5 (CM-5). We demonstrate that runs with
more than 10% particles are now possible on massively
parallel MIMD computers. To the best of our knowl-
edge this 1s at least an order of magnitude more par-
ticles than what has previously been reported. Typical
production runs show sustained performance (includ-
ing communication) in the range of 47-50 GFlops on
a 1024 node CM-5 with vector units (VUs). The speed
of the code scales linearly with the number of proces-
sors and with the number of particles and shows 95%
parallel efficiency in the speedup.

1 Introduction

The use of molecular dynamics (MD)[1] to study
dynamical properties of solids and liquids has been
known for decades, but it is only the recent prolif-
eration of powerful massively parallel computers that
begins to makes detailed studies of realistically sized
systems possible. A cube of material 1000 atoms on
the side measures roughly 0.5um x 0.5um x 0.5um -
while this may seem like a very small piece of mate-
rial - it contains 10° atoms. Solving Newton’s equa-
tions for a billion interacting atoms still represents a
formidable problem for MD. However, realistic calcu-
lations in materials science require system sizes in this
range if the dynamics of defects like dislocations and
grain-boundaries is to be studied. An additional prob-
lem is presented by the short time scale that is ac-
cessible by the MD method, which is typically tens
or maybe hundred of nano-sec. at best. Ideally one
would like to use the MD method for second long sim-
ulations with at least 10° atoms. While this goal is still
very far away, there is substantial current interest in
the development of fast MD algorithms[2, 3, 4, 5, 6, 7]

which allow for the simulation of at least million atom
systems.

We have developed an new scalable MD algo-
rithm based on a message-passing multi-cell approach
which allows for simulating at least 10® particles in-
teracting via a relative short range potential. We
have implemented the algorithm in a code, SPaSM
(Scalable Parallel Short-range Molecular dynamics),
on the Connection Machine 5 (CM-5) and demon-
strated that simulations with tens of millions of atoms
can now be performed routinely. In addition, it is clear
that simulations with 10% particles are now possible at
a sustained rate of 50 GFlops. To our knowledge the
performance numbers are the best reported to date for
any MD simulation and may well be the highest for
any 3D production code implementing a substantial
amount of unstructured communication. In prelimi-
nary 2D studies, we simulated the fracture dynamics
of a piece of material with 2 million atoms that is being
pulled apart in a tensile experiment. We are currently
using SPaSM to study dynamic fracture physics with
millions of atoms in 3D.

2 MDD Simulations

The MD method concerns the solution of Newton’s
equation of motion for N interacting particles. This
general N-body problem involves the calculation of
N (N —1)/2 pair interactions in order to compute the
total force on any given particle:
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here r; indicates the instantaneous position and m;
the mass of particle i. The complexity of the force
calculation is simplified considerably if the potential
V;;(r) has a finite range of interaction. This is a rea-
sonable approximation of the atomistic interactions in
many solids and fluids. In our timings here we have



used the Lennard-Jones 6-12 (LJ) potential
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Here ¢ and € are the usual L.J parameters. The poten-
tial is cut-off at .44, 1. €. no particles interact beyond
this range. We include here timings and performance
numbers for two values of 7,,,4.. We stress that while
more complicated and accurate potentials which in-
clude many-body effects are available, the amount of
work needed in the force calculation 1s represented
well by the LJ potential especially when the cut-off
18 mae = Ho. The number of interacting neighbors
for each particle depends on the value of the cut-off
distance 7,45 and the particle density p.

Our code is written in ANSI C with explicit calls
to the CMMD message-passing library. The kernel of
the force calculation is coded in the CM-5 vector unit
(VU) assembler language, CDPEAC, and consists of
approximately 60 lines of code. All our calculations
were performed in double precision.

3 Multi-cell algorithm

Our algorithm has been described in detail in[7].
Here we briefly outline its main features, illustrating
the algorithm in 2D, but it extends naturally to 3D.
Space 1s considered to be a rectangular region with
periodic boundary conditions.
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Figure 1. Processor layout and force calculation.

This region is subdivided into large cells that are
assigned to the processing nodes (PNs) on the CM-5.
The region assigned to each PN is further subdivided
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Figure 2. 3D interaction path

into small cells with dimensions slightly larger than
the cutoff distance. Particles are assigned to a par-
ticular cell geometrically according to the particle’s
coordinates. In Fig. 1, solid lines represent proces-
sor boundaries while dashed lines represent the cells
created on each PN. For large simulations, many thou-
sands of cells per PN may be created (this does not
explicitly depend on the number of PNs being used).
Associated with each cell is a small block of memory
for storing a sequential list of particles. To compute
the forces for particles in a cell, we first compute all
of the interactions between particles in that cell. Af-
terwards, forces between particles in neighboring cells
are calculated by following an interaction path that
visits neighboring cells. The path in 2D is shown in
Fig. 1 and in 3D in Fig. 2. As we follow the path,
accelerations are accumulated by the original cell and
any visited cells (using Newton’s third law). To calcu-
late all of the forces, this procedure is carried out on
all cells on all of the PNs. Cells will accumulate accel-
erations from their lower neighbors when they calcu-
late their interactions. Whenever the interaction path
crosses a processor boundary, message passing is used
to communicate particle data. After all forces have
been calculated, the particle positions are updated.
Since our algorithm is geometrically based, all of the
data structures must be updated to account for posi-
tional changes. The particle coordinates are checked
and if a particle is in the wrong cell it is moved to the
proper cell. If the new cell is on a different PN, asyn-
chronous message passing is used to send the particle
to its new PN. Each PN checks for incoming parti-
cles and places them in the proper cell when received.
Since a large number of cells may be created on each
PN (even for moderately sized systems) hundreds or
even thousands of message-passing calls may be re-
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Figure 3. Calculating forces on the VUs.

quired for each time step. The amount of commu-
nication and calculation for 3D is substantial due to
an increased number of neighboring cells and a more
complicated interaction path.

4 Using The Vector Units and Parallel
Memory

On each processing node, the CM-5 has four vec-
tor units (VUs) that perform fast vector arithmetic
in a SIMD mode. Each VU has a peak speed of 32
Mflops for a combined speed of 128 Mflops per node.
In addition to performing arithmetic operations, the
VUs also act as memory controllers with each VU con-

trolling an 8 Mbyte bank of memory. The 32 Mbytes
of memory on each PN can be accessed by both the
SPARC processor and the VUs, but the memory is di-
vided into two separate areas for this purpose. SPARC
memory 1s memory that has been allocated for use
by the SPARC processor. All usual SPARC opera-
tions perform normally in this area. Parallel memory
is a special memory allocation that allows the four
VUs to perform simultaneous load/store operations.
Each VU allocates an identically structured memory
region in the 8 Mbyte memory bank that they con-
trol. When loads or stores are performed, each VU
accesses its particular bank. This allows the VUs to
operate on four different data sets in a SIMD mode.
The SPARC processor can access any particular bank



of parallel memory, but the VUs can not directly ac-
cess SPARC memory. Transferring data between the
two memory regions can be done using special instruc-
tions, but accessing SPARC memory from the VUs is
slow and should be avoided as much as possible. As
a general rule, any operations involving the VUs must
use parallel memory for optimal performance.

To access the VUs, we have implemented the force
calculation in CDPEAC (the assembler language for
controlling the CM-5 vector units). The kernel of the
force calculation takes two cells of particles and calcu-
lates the resulting accelerations between the particles.
This calculation is described in detail in Fig. 3. First,
the particle coordinates from the two cells are copied
from SPARC memory and replicated across all four
VUs in parallel memory. Eight particles from cell 2
are then loaded onto all four VUs. We then loop over
all of the particles in cell 1 and calculate the acceler-
ations between these particles and the eight particles
loaded from cell 2. At each step, four different parti-
cles from cell 1 are loaded (a different particle on each
VU). This allows the VUs to calculate 32 interactions
simultaneously. Once all particles in cell 1 have been
processed, the next set of eight particles from cell 2
is loaded and the process is repeated. The calculation
continues, calculating 32 interactions per step, until
all accelerations have been calculated. Afterwards,
the resulting accelerations are gathered from parallel
memory and saved back to SPARC memory.

All internal data structures in our code are stored
in SPARC memory. This allows the data to be easily
accessible to functions that do not require the VUs.
Whenever particles are used in the force calculation,
they are copied to parallel memory. For simulations
with a cutoff of ry,.e = bo, each cell may contain
several hundred particles and most of the time is spent
calculating interactions in the force kernel. The extra
overhead associated with copying the particles from
SPARC memory to parallel memory is small so we
pay a minimal penalty for using SPARC memory in
this case. For simulations with a smaller cutoff such
as Tmar = 2.Do, the number of cells per processor
increases dramatically while the number of particles
per cell decreases. In this case, it is more difficult to
keep the VUs busy and our use of parallel memory
becomes more critical.

To obtain better performance with a smaller in-
teraction cutoff 7,44, several modifications have been
made. The main performance problem is that of load-
ing the particles into parallel memory from SPARC
memory. If we use the same scheme developed for
large cutoff distances, each cell is loaded into par-

allel memory whenever needed in the force calcula-
tion. This results in each cell being loaded to par-
allel memory as many as 14 times (once when calcu-
lating self-interactions and 13 times when neighbor-
ing cells calculate their interactions). To reduce the
amount of loading, a parallel memory caching scheme
has been implemented. A buffer for holding a col-
lection of cells 1s allocated in parallel memory. Each
time a cell is encountered in the force calculation, this
buffer is checked to see if that cell has already been
loaded. If not, it is loaded to parallel memory and
the previous contents (if any) saved back to SPARC
memory (including accelerations). The loading pro-
cess operates according to a FIFO scheme and even-
tually new cells will begin to replace previously loaded
cells in the cache. As the force calculation proceeds,
previously loaded cells will no longer be necessary in
the calculation (after they have remained in the cache
sufficiently long) and can be saved back to SPARC
memory without having to be reloaded. This prop-
erty is due to the fact that the interaction path has
a finite range and will not see cells that were loaded
much earlier in the calculation. By making the cache
sufficiently large, each cell will be loaded to parallel
memory only once and a substantial improvement in
performance is obtained.
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Figure 4 : Effect of caching on iteration time

In our code, the amount of memory available for
caching can be adjusted. This gives us increased flexi-
bility since our code can be optimized for memory (by
using a small cache) or for speed (by using a larger
cache). This allows us to run small simulations at
increased speed or large simulations with more than
108 particles by simply adjusting our memory usage.
Caching has significantly improved our code perfor-
mance for simulations with a cutoff of 7, = 2.50.
The speedup obtained by caching for a particular sim-
ulation is shown in Fig. 4. As more memory is added



to the cache, the iteration time drops rapidly. In the
figure we also see that little speedup is gained by
caching more than 30% of the cells. For very large
simulations, we have found that even adding a small
cache of 1-2% of the cells can dramatically improve
performance.

5 Timings and performance

In Table 1 (rpq; = 5o) we summarize the timings
for runs on a variety of CM-5 processor partitions with
different number of particles, N, in the range from 1
million to 131 million. The particles, in each case,
were arranged in a uniform 3D cubic lattice at con-
stant density p = N/o3® = 1. With this density and
interaction cutoff, each particle has approximately 520
interacting neighbors. This configuration is unstable
and will undergo a phase change where the particles
rearrange in an face-center-cubic (fcc) configuration.
This choice of initial conditions thus guarantees that
the particles are moving between processors and real-
istic inter-processor communication is involved.

In the table, the update time per time step and the
corresponding GFlop rates are given (the numbers in
parenthesis are the GFlop rates.) The GFlop rates
were obtained by counting the total number of inter-
actions between the particles during a time step. Each
interaction involves a force calculation with 42 float-
ing point operations in the CDPEAC kernel (counting
multiply, add, and compare as one operation each and
divide as five)[8]. The GFlop numbers are calculated
by multiplying the total interaction count by 42 and
dividing this number with the time for a time step
(measured with CMMD_node_timer_elapsed). This
procedure was then repeated and averaged over many
time steps. Our numbers thus include both compu-
tation and inter-processor communication and reflects
the speed of realistic production runs.’

In Table 2 we summarize our recent timings for runs
with a cutoft of 7,4, = 2.50. The update time per
time step and the GFlop rates are given. All runs
were performed using parallel memory caching. In
each case, 25% of the cells were cached except for the
run with 131 million particles that used a 3% cache.
With a cutoff of r,.. = 2.50, each particle has ap-
proximately 65 interacting neighbors. Since each par-
ticle has fewer neighbors, it is more difficult to keep the
VUs busy during the force calculation. Consequently,
the GFlop rates are lower. However, our best timing

! The bare kernel of the force calculation (with no communi-
cation or SPARC memory operations) runs at 68.5 GFlops.

for rpae = 2.50 is our run with 65 million particles
on 1024 PNs. In this case, the update time is 16.55
seconds which corresponds to 250 nano-sec. per par-
ticle update. To the best of our knowledge, this is the
best reported time to date [6]. Using minimal paral-
lel memory caching, we were also able to simulate 180
million particles with an update time of 55.6 seconds.
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Figure 5 : MD update time vs. number of processors

In Fig. 5 we illustrate the scaling properties of our
code. The data are for runs with 1 million particles
and two different values of the cut-off 7,4+ = Ho and
maz = 2.90. A near linear dependence is found for
both values of the cut-off. This is of course also evident
from the numbers in Tables 1 and 2. It should also
be noted that our algorithm scales linearly with the
number of particles for a fixed number of processors.

ez = D0 Fmaz = 2.50
Particles | Comp. Comm. | Comp. Comm.
1024000 | 82.5% 17.5% | 78.0% 22.0%
4096000 | 88.5% 11.5% | 77.2% 23.8%
16384000 | 91.9% 8.1% | 84.8% 15.2%
65536000 | 93.2% 6.8% | 89.5% 10.5%
131072000 | 94.4% 5.6% | 90.8% 9.2%

Table 3: Timing breakdown for 1024 PNs

In Table 3 the breakdown of computation and com-
munication time is given. For the larger simulations,
each processor may have many thousands of cells. As a
result, calculating the accelerations may require sev-
eral thousand message passing calls. Depending on
the value of 745, each message passing call may in-
volve a transfer of 800-10000 bytes. Despite the large
amount of communication, our algorithm is dominated
by the calculation of forces for both values of rp,4.. In



Processors
Particles 32 64 128 256 512 1024
1024000 | 47.94 (1.5)  25.41 (2.9)  12.56 (5.8)  6.79 (10.7)  4.30 (16.9)  1.66 (43.7)
2048000 | 94.39 (1.5)  48.39 (3.0)  24.43 (5.9) 1275 (11.4)  6.92 (21.0)  3.16 (47.0)
4096000 | 186.83 (1.6)  95.28 (3.1)  47.98 (6.0)  25.57 (11.4)  14.00 (20.7)  6.17 (47.0)
8192000 ~188.00 (3.1)  95.11 (6.1)  50.63 (11.5)  28.12 (20.6)  12.13 (47.8)
16384000 - -~ 18577 (6.2) 9552 (12.2)  52.60 (22.1)  23.68 (49.0)
32768000 - - - 190.81 (12.2) 101.55 (22.9)  46.71 (49.7)
65536000 - - - - 204.91 (22.6)  92.91 (50.0)
131072000 - - - - - 183.01 (50.7)

Table 1: Update times per time step in sec. (GFlops in parenthesis). Cut-off: 7,4, = 5o

Processors

Particles 32 64 128 256 512 1024
1024000 | 8.90 (0.81) 4.51 (1.61)  2.32 (3.12)  1.26 (5.74)  0.72 (10.07)  0.44 (16.55)
2048000 - 896 (1.62)  4.44 (3.26)  2.46 (5.90)  1.36 (10.65)  0.74 (19.54)
4096000 - - 879(3.29) 481 (6.03)  2.67 (10.84)  1.36 (21.27)
8192000 - - 16.83 (3.44) 8.81 (6.58) 4.80 (12.07) 2.47 (23.50)
16384000 - - - 16.95 (6.84)  8.74 (13.26)  4.49 (25.82)
32768000 - - - - 16.90 (13.72)  8.54 (27.14)
65536000 - - - - - 16.55 (28.01)
131072000 - - - - - 34.26 (27.06)

Table 2: Update times per time step in sec

the table, computation time includes the calculation
of forces and the numerical integration. The commu-
nication time includes all message passing during the
interaction calculation and the time to redistribute the
particles after each time step.

With a cutoff of 7,4, = 5o, the speedup from a run
with 4 million particles on a 32 node CM-5 to the same
run on a 1024 node CM-5 is over a factor 30 and cor-
responds to 95% parallel efficiency. We were also re-
cently able to run SPaSM on a 4 PN CM-5 with 1 mil-
lion particles. The update time here was 367 sec. The
speedup achieved with same run on 1024 PNs is a fac-
tor 221, representing 86% parallel efficiency. Our best
performance number, 50.7 GFlops, represents 40% of
the theoretical peak performance of 128 GFlops on a
1024 node CM-5. The 50.7 GFlops also represents a
cost/performance number of 1.95 GFlops/$Million.

6 Conclusion

We

multi-million particle MD simulations can now be per-

have demonstrated that three-dimensional

formed routinely on massively parallel MIMD com-

. (GFlops in parenthesis). Cut-off: 7,4, = 2.50.

puter systems. To demonstrate the practicality of the
algorithm, we present a few time frames from a mil-
lion particle impact simulation. The simulated par-
ticles have an interaction cut-off of r,,.,, = 2.50 and
the time step of the integration is At = 0.01 time
units. The system is initiated with one block of par-
ticles in a fcc lattice with 200x200x25 (10°) atoms,
and a projectile in a fcc lattice with the dimensions
200 x200 x40 layers (14000) atoms. The projectile has
a velocity of 10 towards the block (~1.3 times the
sound velocity in the lattice). This initial condition
is shown in Fig. 6a. In Fig. 6b we show the system
at t = 2.5. The projectile has made contact with the
block and has partially penetrated. The hexagonal
nature of the lattice is seen to dominate the phonons
emitted on the surface of the block, even though the
projectile makes contact with a square (20x20) shape.
Finally, in Fig. 6c, we show the particles at ¢ = 5,
where part of the projectile has been absorbed in the
block. Other parts of the projectile have disintegrated
into almost free particles. We are currently using
SPaSM to perform other multi-million atom simula-
tions.

The impact simulation shows the inherently un-



structured nature of MD simulations. In principle,
every particle is free to move to any location within
the system. This may require a substantial amount of
communications and data management. However, we
have been able to achieve high performance by care-
fully analyzing the problem and mapping it to the ar-
chitecture of the CM-5. Our algorithm is dominated
by computation with communication requiring only 5-
20% of the overall time. Our algorithm scales linearly
with the number of processors and the number of par-
ticles. With an interaction cutoff of r,,4: = 5o, runs
with a sustained calculation rate of 50 Gflops can be
performed on a 1024 PN CM-5. With a smaller cut-
off of rp4e = 2.50, we can achieve an update time of
250 nano-seconds per particle. This fast update time
allows us to run large MD simulations that have been
impossible to perform in the past. Using all of the
memory of the CM-5, we have also been able to sim-
ulate more than 180 million particles in 3D. While we
may not be able to model 1 billion particles on cur-
rent machines, this goal now seems within reach as
next generation machines become available.
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