
Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Inside the Python GIL

1

David Beazley
http://www.dabeaz.com

Originally presented at my "Python Concurrency
Workshop", May 14-15, 2009 (Chicago)

June 11, 2009 @ chipy

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Video Presentation

2

You can watch the video of this presentation here:

http://blip.tv/file/2232410

It expands upon the slides and is recommended.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Introduction

• As most programmers know, Python has a
Global Interpreter Lock (GIL)

• It imposes various restrictions on threads

• Namely, you can't utilize multiple CPUs

• Thus, it's a (frankly) tired subject for flamewars
about how Python "sucks" (along with tail-call
optimization, lambda, whitespace, etc.)

3

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Disclaimers

• Python's use of a GIL doesn't bother me

• I don't have strong feelings about it either way

• Bias : For parallel computing involving heavy CPU
processing, I much prefer message passing and
cooperating processes to thread programming
(of course, it depends on the problem)

• However, the GIL has some pretty surprising
behavior on multicore that interests me

4

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Performance Experiment
• Consider this trivial CPU-bound function

def count(n):
 while n > 0:
 n -= 1

5

• Run it twice in series
count(100000000)
count(100000000)

• Now, run it in parallel in two threads
t1 = Thread(target=count,args=(100000000,))
t1.start()
t2 = Thread(target=count,args=(100000000,))
t2.start()
t1.join(); t2.join()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Mystery
• Why do I get these performance results on

my Dual-Core MacBook?

6

Sequential : 24.6s
Threaded : 45.5s (1.8X slower!)

• And if I disable one of the CPU cores, why
does the threaded performance get better?

Threaded : 38.0s

• Think about that for a minute... Bloody hell!

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Overview
• I don't like unexplained mysteries or magic

• As part of a workshop I ran in May, I went
digging into the GIL implementation to see if I
could figure out exactly why I was getting those
performance results

• An exploration that went all the way from
Python scripts to the C source code of the
pthreads library (yes, I probably need to go
outside more often)

• So, let's just jump into it...
7

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

What is a Thread?

• Python threads are real system threads

• POSIX threads (pthreads)

• Windows threads

• Fully managed by the host operating system

• All scheduling/thread switching

• Represent threaded execution of the Python
interpreter process (written in C)

8

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Creation
• Python threads simply execute a "callable"

• The run() method of Thread (or a function)

9

import time
import threading

class CountdownThread(threading.Thread):
 def __init__(self,count):
 threading.Thread.__init__(self)
 self.count = count
 def run(self):
 while self.count > 0:
 print "Counting down", self.count
 self.count -= 1
 time.sleep(5)
 return

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Behind the Scenes
• There's not a whole lot going on...

• Here's what happens on thread creation

• Python creates a small data structure
containing some interpreter state

• A new thread (pthread) is launched

• The thread calls PyEval_CallObject

• Last step is just a C function call that runs
whatever Python callable was specified

10

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread-Specific State
• Each thread has its own interpreter specific

data structure (PyThreadState)

• Current stack frame (for Python code)

• Current recursion depth

• Thread ID

• Some per-thread exception information

• Optional tracing/profiling/debugging hooks

• It's a small C structure (<100 bytes)

11

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

PyThreadState Structure

12

typedef struct _ts {
 struct _ts *next;
 PyInterpreterState *interp;
 struct _frame *frame;
 int recursion_depth;
 int tracing;
 int use_tracing;
 Py_tracefunc c_profilefunc;
 Py_tracefunc c_tracefunc;
 PyObject *c_profileobj;
 PyObject *c_traceobj;
 PyObject *curexc_type;
 PyObject *curexc_value;
 PyObject *curexc_traceback;
 PyObject *exc_type;
 PyObject *exc_value;
 PyObject *exc_traceback;
 PyObject *dict;
 int tick_counter;
 int gilstate_counter;
 PyObject *async_exc;
 long thread_id;
} PyThreadState;

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Execution

• The interpreter has a global variable that
simply points to the ThreadState structure of
the currently running thread

13

/* Python/pystate.c */
...
PyThreadState *_PyThreadState_Current = NULL;

• Operations in the interpreter implicitly
depend this variable to know what thread
they're currently working with

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Infamous GIL
• Here's the rub...

• Only one Python thread can execute in the
interpreter at once

• There is a "global interpreter lock" that
carefully controls thread execution

• The GIL ensures that sure each thread gets
exclusive access to the interpreter internals
when it's running (and that call-outs to C
extensions play nice)

14

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

GIL Behavior
• It's simple : threads hold the GIL when running

• However, they release it when blocking for I/O

15

I/O I/O I/O

rel
ea

se

ac
qu

ire

rel
ea

se

ac
qu

ire

ac
qu

ire

rel
ea

se

• So, any time a thread is forced to wait, other
"ready" threads get their chance to run

• Basically a kind of "cooperative" multitasking

run run run run

ac
qu

ire

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

CPU Bound Processing
• To deal with CPU-bound threads that never

perform any I/O, the interpreter periodically
performs a "check"

• By default, every 100 interpreter "ticks"

16

CPU Bound
Thread Run 100

ticks
Run 100

ticks
Run 100

ticks

ch
ec

k
ch

ec
k

ch
ec

k

• sys.setcheckinterval() changes the setting

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Check Interval
• The check interval is a global counter that is

completely independent of thread scheduling

17

Main Thread
100 ticks ch

ec
k

ch
ec

k
ch

ec
k

100 ticks 100 ticks

Thread 2

Thread 3

Thread 4

100 ticks

• A "check" is simply made every 100 "ticks"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Periodic Check

• What happens during the periodic check?

• In the main thread only, signal handlers
will execute if there are any pending
signals (more shortly)

• Release and reacquire the GIL

• That last bullet describes how multiple CPU-
bound threads get to run (by briefly releasing
the GIL, other threads get a chance to run).

18

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

ceval.c execution

19

/* Python/ceval.c */
...

if (--_Py_Ticker < 0) {
 ...
 _Py_Ticker = _Py_CheckInterval;
 ...
 if (things_to_do) {
 if (Py_MakePendingCalls() < 0) {
 ...
 }
 }
 if (interpreter_lock) {
 /* Give another thread a chance */
 ...
 PyThread_release_lock(interpreter_lock);

 /* Other threads may run now */

 PyThread_acquire_lock(interpreter_lock, 1);
 ...
}

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

What is a "Tick?"
• Ticks loosely map to interpreter instructions

20

def countdown(n):
 while n > 0:
 print n
 n -= 1

>>> import dis
>>> dis.dis(countdown)
0 SETUP_LOOP 33 (to 36)
3 LOAD_FAST 0 (n)
6 LOAD_CONST 1 (0)
9 COMPARE_OP 4 (>)
12 JUMP_IF_FALSE 19 (to 34)
15 POP_TOP
16 LOAD_FAST 0 (n)
19 PRINT_ITEM
20 PRINT_NEWLINE
21 LOAD_FAST 0 (n)
24 LOAD_CONST 2 (1)
27 INPLACE_SUBTRACT
28 STORE_FAST 0 (n)
31 JUMP_ABSOLUTE 3
...

Tick 1

Tick 2

Tick 3

Tick 4

• Instructions in
the Python VM

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Tick Execution
• Interpreter ticks are not time-based

21

• In fact, long operations can block everything
>>> nums = xrange(100000000)
>>> -1 in nums
False
>>>

1 tick (~ 6.6 seconds)

• Try hitting Ctrl-C (ticks are uninterruptible)
>>> nums = xrange(100000000)
>>> -1 in nums
^C^C^C (nothing happens, long pause)
...
KeyboardInterrupt
>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude : Signals

• Let's briefly talk about Ctrl-C

• A very common problem encountered with
Python thread programming is that threaded
programs can no longer be killed with the
keyboard interrupt

• It is EXTREMELY ANNOYING (you have to use
kill -9 in a separate window)

• Ever wonder why it doesn't work?

22

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Signal Handling
• If a signal arrives, the interpreter runs the "check"

after every tick until the main thread runs

23

Main Thread
100 ticks ch

ec
k

Thread 2

Thread 3

• Since signal handlers can only run in the main
thread, the interpreter quickly acquires/releases
the GIL after every tick until it gets scheduled

ch
ec

k

SIGNAL

ch
ec

k
ch

ec
k

1 tick

100 ticksch
ec

k
ch

ec
k
ch

ec
k

signal
handler

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Scheduling

• Python does not have a thread scheduler

• There is no notion of thread priorities,
preemption, round-robin scheduling, etc.

• All thread scheduling is left to the host
operating system (e.g., Linux, Windows, etc.)

• This is partly why signals get so weird (the
interpreter has no control over scheduling so
it just attempts to thread switch as fast as
possible with the hope that main will run)

24

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Frozen Signals

• The reason Ctrl-C doesn't work with threaded
programs is that the main thread is often blocked
on an uninterruptible thread-join or lock

• Since it's blocked, it never gets scheduled to run
any kind of signal handler for it

• And as an extra little bonus, the interpreter is left
in a state where it tries to thread-switch after
every tick (so not only can you not interrupt
your program, it runs slow as hell!)

25

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

GIL Implementation
• The GIL is not a simple mutex lock

• The implementation (Unix) is either...

• A POSIX unnamed semaphore

• Or a pthreads condition variable

• All interpreter locking is based on signaling

• To acquire the GIL, check if it's free. If
not, go to sleep and wait for a signal

• To release the GIL, free it and signal

26

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Scheduling
• Thread switching is far more subtle than most

programmers realize

27

Thread 1
100 ticks

ch
ec

k
ch

ec
k

ch
ec

k

100 ticks

Thread 2

...

Operating
System

signal

signal

SUSPENDED

Thread
Context
Switch

ch
ec

k

• The lag between signaling and execution may be
significant (depends on the OS)

SUSPENDED

signal

signal

ch
ec

k

signal

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thread Scheduling
• The OS is just going to schedule whichever

thread has the highest execution "priority"

• CPU-bound : low priority

• I/O bound : high priority

• If a signal is sent to a thread with low priority
and the CPUs are busy with higher priority
tasks, it won't run until some later point

• Read an OS textbook for details

28

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

CPU-Bound Threads

• As we saw earlier, CPU-bound threads have
horrible performance properties

• Far worse than simple sequential execution

• 24.6 seconds (sequential)

• 45.5 seconds (2 threads)

• A big question : Why?

• What is the source of that overhead?

29

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Signaling Overhead

• GIL thread signaling is the source of that

• After every 100 ticks, the interpreter

• Locks a mutex

• Signals on a condition variable/semaphore
where another thread is always waiting

• Because another thread is waiting, extra
pthreads processing and system calls get
triggered to deliver the signal

30

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Rough Measurement
• Sequential Execution (OS-X, 1 CPU)

• 736 Unix system calls

• 117 Mach System Calls

• Two CPU-bound threads (OS-X, 1 CPU)

• 1149 Unix system calls

• ~ 3.3 Million Mach System Calls

• Yow! Look at that last figure.

31

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Multiple CPU Cores
• The penalty gets far worse on multiple cores

• Two CPU-bound threads (OS-X, 1 CPU)

• 1149 Unix system calls

• ~3.3 Million Mach System Calls

• Two CPU-bound threads (OS-X, 2 CPUs)

• 1149 Unix system calls

• ~9.5 Million Mach System calls

32

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Experiment

• I did some instrumentation of the Python
interpreter to look into this a little deeper

• Recorded a real-time trace of all GIL
acquisitions, releases, conflicts, retries, etc.

• Trying to get an idea of what the interpreter is
doing, what different threads are doing,
interactions between threads and the GIL, and
the overall sequencing of events

33

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Sample Trace

34

t2 100 5351 ENTRY
t2 100 5351 ACQUIRE
t2 100 5352 RELEASE
t2 100 5352 ENTRY
t2 100 5352 ACQUIRE
t2 100 5353 RELEASE
t1 100 5353 ACQUIRE
t2 100 5353 ENTRY
t2 38 5353 BUSY
t1 100 5354 RELEASE
t1 100 5354 ENTRY
t1 100 5354 ACQUIRE
t2 79 5354 RETRY
t1 100 5355 RELEASE
t1 100 5355 ENTRY
t1 100 5355 ACQUIRE
t2 73 5355 RETRY
t1 100 5356 RELEASE
t2 100 5356 ACQUIRE
t1 100 5356 ENTRY
t1 24 5356 BUSY
t2 100 5357 RELEASE

thread id ENTRY : Entering GIL critical section

ACQUIRE : GIL acquired
RELEASE : GIL released

BUSY : Attempted to acquire
GIL, but it was already in use

RETRY : Repeated attempt to
acquire the GIL, but it was
still in use

tick
countdown

total
number of
"checks"
executed

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Multicore GIL Contention
• With multiple cores, CPU-bound threads get

scheduled simultaneously (on different cores)
and then have a GIL battle

35

Thread 1 (CPU 1) Thread 2 (CPU 2)

Release GIL signal
Acquire GIL Wake

Acquire GIL (fails)
Release GIL
Acquire GIL

signal
Wake
Acquire GIL (fails)

run

run

run

• The waiting thread (T2) may make 100s of
failed GIL acquisitions before any success

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The GIL Battle (Traced)

36

t2 100 5392 ENTRY
t2 100 5392 ACQUIRE
t2 100 5393 RELEASE
t1 100 5393 ACQUIRE
t2 100 5393 ENTRY
t2 27 5393 BUSY
t1 100 5394 RELEASE
t1 100 5394 ENTRY
t1 100 5394 ACQUIRE
t2 74 5394 RETRY
t1 100 5395 RELEASE
t1 100 5395 ENTRY
t1 100 5395 ACQUIRE
t2 83 5395 RETRY
t1 100 5396 RELEASE
t1 100 5396 ENTRY
t1 100 5396 ACQUIRE
t2 80 5396 RETRY
t1 100 5397 RELEASE
t1 100 5397 ENTRY
t1 100 5397 ACQUIRE
t2 79 5397 RETRY
...

A thread switch

t2 tries to keep running, but
immediately has to block because
t1 acquired the GILsignal

signal

signal

signal

Here, the GIL battle begins. Every
RELEASE of the GIL signals t2. Since
there are two cores, the OS schedules
t2, but leaves t1 running on the other
core. Since t1 is left running, it
immediately reacquires the GIL before
t2 can get to it (so, t2 wakes up, finds
the GIL is in use, and blocks again)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Scheduler Conflict
• What's happening here is that you're seeing

a battle between two competing (and
ultimately incompatible) goals

• Python - only wants to run single-
threaded, but doesn't want anything to
do with thread scheduling (up to OS)

• OS - "Oooh. Multiple cores." Freely
schedules processes/threads to take
advantage of as many cores as possible

37

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Multicore GIL Contention
• Even 1 CPU-bound thread causes problems

• It degrades response time of I/O-bound threads

38

Thread 1 (CPU 1) Thread 2 (CPU 2)

Network Packet
Acquire GIL (fails)run

Acquire GIL (fails)

Acquire GIL (fails)

Acquire GIL (success)

signal

signal

signal

signal

run

sleep

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An I/O Bound Trace

39

...
t2 100 161241 ACQUIRE
t2 100 161242 RELEASE
t2 100 161242 ENTRY
t2 100 161242 ACQUIRE
t2 100 161243 RELEASE
t2 100 161243 ENTRY
t2 100 161243 ACQUIRE
t1 45 161243 ENTRY
t1 38 161243 BUSY
t2 100 161244 RELEASE
t2 100 161244 ENTRY
t2 100 161244 ACQUIRE
t1 68 161244 RETRY
t2 100 161245 RELEASE
t2 100 161245 ENTRY
t2 100 161245 ACQUIRE
t1 77 161245 RETRY
...
t1 100 161404 ACQUIRE
t1 97 161404 RELEASE

CPU bound thread running
Incoming I/O

I/O bound thread
attempting to acquire the
GIL (in response to I/O)

~16000 ticks!

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An I/O Bound Trace

40

...
t2 100 161241 ACQUIRE
t2 100 161242 RELEASE
t2 100 161242 ENTRY
t2 100 161242 ACQUIRE
t2 100 161243 RELEASE
t2 100 161243 ENTRY
t2 100 161243 ACQUIRE
t1 45 161243 ENTRY
t1 38 161243 BUSY
t2 100 161244 RELEASE
t2 100 161244 ENTRY
t2 100 161244 ACQUIRE
t1 68 161244 RETRY
t2 100 161245 RELEASE
t2 100 161245 ENTRY
t2 100 161245 ACQUIRE
t1 77 161245 RETRY
...
t1 100 161404 ACQUIRE
t1 97 161404 RELEASE

CPU bound thread running
Incoming I/O

I/O bound thread
attempting to acquire the
GIL (in response to I/O)

~16000 ticks!And all this
work just to

execute 3 ticks

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Priority Inversion
• This last scenario is a bizarre sort of

"priority inversion" problem

• A CPU-bound thread (low priority) is
blocking the execution of an I/O-bound
thread (high priority)

• It occurs because the I/O thread can't
wake up fast enough to acquire the GIL
before the CPU-bound thread reacquires it

• And it only happens on multicore...

41

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Comments
• As far as I can tell, the Python GIL

implementation has not changed much (if at
all) in the last 10 years

• The GIL code in Python 1.5.2 looks almost
identical to the code in Python 3.0

• I don't know whether it's even been studied
all that much (especially on multicore)

• There is more interest in removing the GIL
than simply changing the GIL

42

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Comments

• I think this deserves further study

• There is a pretty severe performance
penalty for using threads on multicore

• The priority inversion for I/O-bound
processing is somewhat disturbing

• Probably worth fixing--especially if the GIL
is going to stick around

43

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Open Questions

• How in the hell would you fix this?

• I have some vague ideas, but they're all "hard"

• Require Python to do its own form of thread
scheduling (or at least cooperate with the OS)

• Would involve a non-trivial interaction
between the interpreter implementation, the
operating system scheduler, the thread library,
and C extension modules (egad!)

44

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Is it Worth It?
• If you could fix it, it would make thread

execution (even with the GIL) more
predictable and less resource intensive

• Might improve performance/responsiveness of
applications that have a mix of CPU and I/O-
bound processing

• Probably good for libraries that use threads in
the background (e.g., multiprocessing)

• Might be able to do it without rewriting the
whole interpreter.

45

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

That's All Folks

• I'm not actively working on any patches or
code related to this presentation

• However, the problem interests me

• If it interests you and you want to hack on
any of my code or examples, send me an
email (dave@dabeaz.com)

46

