
Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Inside the New GIL

1

David M. Beazley
http://www.dabeaz.com

January 14, 2010
@chipy

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

What Happens at Chipy...

• ... gets people to go change Python

• In June, 2009, I gave that "Mindblowing GIL"
presentation and said it would be cool for
someone to hack on the problem

• Python 3.2 has a brand new GIL (implemented
by Antoine Pitrou)

• Yay!

2

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

This Talk

• A very brief refresher on the old GIL

• An overview of the new one

• If you didn't see the previous talk, go to

3

http://www.dabeaz.com/python/GIL.pdf

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Disclaimer

• All of this is pretty bleeding edge

• I'm still working on a bunch of updated GIL
benchmarks and other results in preparation
for PyCON'2010

• So, this talk is rather preliminary... a preview
perhaps.

4

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Memory Refresh

• Python has the Global Interpreter Lock (GIL)

• It prevents more than one thread from running
simultaneously in the interpreter

• On multicore, it has diabolical behavior

• Not only kills the performance of Python, but
affects the performance of the whole machine
due to all sorts of crazy system thrashing.

5

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

A Performance Test

• Consider this CPU-bound function
def count(n):
 while n > 0:
 n -= 1

6

• Sequential Execution:
count(100000000)
count(100000000)

• Threaded execution
t1 = Thread(target=count,args=(100000000,))
t1.start()
t2 = Thread(target=count,args=(100000000,))
t2.start()

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Bizarre Results
• Performance comparison (Dual-Core 2Ghz

Macbook, OS-X 10.5.6)

7

Sequential : 24.6s
Threaded : 45.5s (1.8X slower!)

• If you disable one of the CPU cores...

Threaded : 38.0s

• Insanely horrible performance. Better
performance with fewer CPU cores? It
makes no sense.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Thread Scheduling
• The old GIL was entirely based on interpreter

ticks and repeated signaling on a cond. var.

8

Thread 1
100 ticks

ch
ec

k
ch

ec
k

ch
ec

k

100 ticks

Thread 2

...

Operating
System

signal

signal

SUSPENDED

Thread
Context
Switch

ch
ec

k

SUSPENDED

signal

signal

ch
ec

k

signal

• All of that signaling is what kills performance

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Multicore GIL Battle
• With multiple cores, CPU-bound threads get

scheduled simultaneously (on different
processors) and then fight it out

9

Thread 1 (CPU 1) Thread 2 (CPU 2)

Release GIL signal
Acquire GIL Wake

Acquire GIL (fails)
Release GIL
Acquire GIL

signal
Wake
Acquire GIL (fails)

run

run

run

• The waiting thread (T2) may make 100s of
failed GIL acquisitions before any success

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

GIL Battle (In Pictures)

10

228000 ticks

thread 1
thread 2

2 CPU-bound threads
1 CPU

Idle Running Failed GIL Acquire

66700 ticks

thread 1
thread 2

2 CPU-bound threads
2 CPUs

Commentary: Even hard-core Python developers
had no idea that this was going on with multicore

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

The New GIL

• First things first: The new GIL does not
eliminate the GIL--it makes it better

• New implementation aims to provide more
consistent runtime behavior of threads

• Namely, a significant reduction in all of that
thrashing and extra signaling overhead

11

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

New GIL Explained

• The new GIL is still based on condition
variables and signaling

• However, it's put together in an entirely
different way

• Let's take a look

12

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Interpreter Ticks - Gone

• Past versions of Python kept track of
interpreter instructions and "ticks"

• Once a certain number of ticks had executed,
a thread-switch signal was sent

• This is gone. There are no more ticks.

• sys.setcheckinterval() is gone too

• New GIL is time-based (more in a second)

13

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

New Thread Switching
• Decision to thread switch tied to a global var

14

/* Python/ceval.c */
...

static volatile int gil_drop_request = 0;

• A thread runs forever in the interpreter until
the value of this variable gets set to 1

• At which point, the thread must drop the GIL

• Big question: How does that happen?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

New GIL Illustrated

15

Thread 1
running

• In the beginning, there is one thread

• It runs forever

• Never releases the GIL

• Never sends any signals

• Life is good

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

New GIL Illustrated

16

Thread 1

Thread 2 SUSPENDED

running

• Now, a second thread makes an appearance...

• It is suspended because it doesn't have the GIL

• Somehow, it has to get it from Thread 1

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

New GIL Illustrated

17

Thread 1

Thread 2 SUSPENDED

running

• Second thread does a timed cv_wait on GIL

• The idea : Thread 2 will wait to see if the GIL
gets released voluntarily by Thread 1 (e.g., if
Thread 1 performs I/O or goes to sleep)

cv_wait(gil, TIMEOUT)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

New GIL Illustrated

18

Thread 1

Thread 2 SUSPENDED

running

• Voluntary GIL release

• This is the easy case. Second thread gets
signaled when Thread 1 sleeps. It runs

cv_wait(gil, TIMEOUT)

I/O wait

signal

running

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

New GIL Illustrated

19

Thread 1

Thread 2 SUSPENDED

running

• Timeout causes gil_drop_request to be set

• After setting gil_drop_request, Thread 2
repeats its wait request on the GIL

cv_wait(gil, TIMEOUT)

TIMEOUT

gil_drop_request = 1

cv_wait(gil, TIMEOUT)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

New GIL Illustrated

20

Thread 1

Thread 2 SUSPENDED

running

• Thread 1 is forced to give up the GIL

• It will finish its current instruction, drop the GIL
and signal that it has released it

cv_wait(gil, TIMEOUT)

TIMEOUT

cv_wait(gil, TIMEOUT)

gil_drop_request = 1 signal

running

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

New GIL Illustrated

21

Thread 1

Thread 2 SUSPENDED

running

• On GIL release, Thread 1 waits for a signal

• Signal indicates that the other thread
successfully got the GIL and is now running

• This eliminates the "GIL Battle"

cv_wait(gil, TIMEOUT)

TIMEOUT

cv_wait(gil, TIMEOUT)

gil_drop_request = 1 signal

running

WAIT

cv_wait(gotgil)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

New GIL Illustrated

22

Thread 1

Thread 2 SUSPENDED

running

• The process now repeats itself for Thread 1

• So, the sequence you see above happens over
and over again as CPU-bound threads execute

cv_wait(gil, TIMEOUT)

TIMEOUT

cv_wait(gil, TIMEOUT)

gil_drop_request = 1 signal

running

WAIT

cv_wait(gotgil)

SUSPENDED

cv_wait(gil, TIMEOUT)

gil_drop_request =0

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Default Timeout

• Default timeout for thread switching is 5
milliseconds (0.005s)

• By comparison, default context-switching
interval on most systems is 10 milliseconds

• Adjust with sys.setswitchinterval()

23

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Multiple Thread Handling

• On GIL timeout, a thread only sets
gil_drop_request=1 if no thread switches of
any kind have occurred in that period

• It's subtle, but if there are a lot of threads
competing, gil_drop_request only gets set
once per "time interval"

• You want this

24

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Multiple Threads

25

Thread 1

Thread 2 SUSPENDED

running

TIMEOUT

gil_drop_request = 1

running

SUSPENDEDThread 3

SUSPENDEDThread 4

TIMEOUT

TIMEOUT
SUSPENDED

SUSPENDED

SUSPENDED

TIMEOUT

gil_drop_request = 1

These timeouts do not
cause the just started

Thread 2 to drop the GIL

First thread to timeout
after Thread 2 starts

makes the drop request

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Multiple Thread Handling

• The thread that makes the request to drop
the GIL is not necessarily the one that runs

• This is determined largely by OS priorities

26

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Multiple Threads

27

Thread 1

Thread 2 SUSPENDED

running

TIMEOUT

gil_drop_request = 1

SUSPENDEDThread 3

SUSPENDEDThread 4 SUSPENDED

SUSPENDED

SUSPENDED

running
signal

• Here, Thread 2 made Thread 1 drop the GIL,
but Thread 3 starts running (up to OS)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Does it Work?

• Yes, it's better (4-core MacPro, OS-X 10.6.2)

28

Sequential : 23.5s
Threaded : 24.0 (2 threads)

• Still working on some other tests (in
preparation for PyCON), but it seems to be
much better behaved--even if creating 100s of
CPU-bound threads

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Interesting Features

• The new GIL allows a thread to run for 5ms
regardless of other threads or I/O priorities

• So, a CPU-bound thread might block an I/O
bound thread for that amount of time

• This is probably what you want to avoid
excessive thrashing/context switching

• Be aware that it might impact response time
(so you may want to adjust the interval)

29

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Interesting Features

• Long running calculations and C/C++
extensions may block thread switching

• Thread switching is not preemptive

• So, if an operation in an C extension takes 5
seconds to run, you will have to wait that long
before the GIL gets released (same was true
of old GIL)

30

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Final Comments

• New GIL probably needs further study

• Seems good. Need to investigate behavior
under heavy I/O processing

• Again, only implemented in Python 3.2 which
is only available via svn checkout

• Backport to Python 2.7? (Don't know)

31

