
Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Mastering Python 3 I/O
David Beazley

http://www.dabeaz.com

Presented at PyCon'2010
Atlanta, Georgia

1

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

This Tutorial

2

• It's about a very specific aspect of Python 3

• Maybe the most important part of Python 3

• Namely, the reimplemented I/O system

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Why I/O?

3

• Real programs interact with the world

• They read and write files

• They send and receive messages

• They don't compute Fibonacci numbers

• I/O is at the heart of almost everything that
Python is about (scripting, gluing, frameworks,
C extensions, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The I/O Problem

4

• Of all of the changes made in Python 3, it is
my observation that I/O handling changes are
the most problematic for porting

• Python 3 re-implements the entire I/O stack

• Python 3 introduces new programming idioms

• I/O handling issues can't be fixed by automatic
code conversion tools (2to3)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The Plan

5

• We're going to take a detailed top-to-bottom
tour of the whole Python 3 I/O system

• Text handling

• Binary data handling

• System interfaces

• The new I/O stack

• Standard library issues

• Memory views, buffers, etc.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Prerequisites

6

• I assume that you are already reasonably
familiar with how I/O works in Python 2

• str vs. unicode

• print statement

• open() and file methods

• Standard library modules

• General awareness of I/O issues

• Prior experience with Python 3 not required

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Performance Disclosure

7

• There are some performance tests

• Execution environment for tests:

• 2.4 GHZ 4-Core MacPro, 3GB memory

• OS-X 10.6.2 (Snow Leopard)

• All Python interpreters compiled from
source using same config/compiler

• Tutorial is not meant to be a detailed
performance study so all results should be
viewed as rough estimates

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Let's Get Started

8

• I have made a few support files:

http://www.dabeaz.com/python3io/index.html

• You can try some of the examples as we go

• However, it is fine to just watch/listen and try
things on your own later

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 1

9

Introducing Python 3

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Syntax Changes

10

• As you know, Python 3 changes syntax

• print is now a function print()

print("Hello World")

• Exception handling syntax changed slightly
try:
 ...
except IOError as e:
 ...

• Yes, your old code will break

added

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Many New Features

11

• Python 3 introduces many new features

• Composite string formatting

"{0:10s} {1:10d} {2:10.2f}".format(name, shares, price)

• Dictionary comprehensions
a = {key.upper():value for key,value in d.items()}

• Function annotations
def square(x:int) -> int:
 return x*x

• Much more... but that's a different tutorial

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Changed Built-ins

12

• Many of the core built-in operations change

• Examples : range(), zip(), etc.
>>> a = [1,2,3]
>>> b = [4,5,6]
>>> c = zip(a,b)
>>> c
<zip object at 0x100452950>
>>>

• Typically related to iterators/generators

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Library Reorganization

13

• The standard library has been cleaned up

• Especially network/internet modules

• Example : Python 2
from urllib2 import urlopen
u = urlopen("http://www.python.org")

• Example : Python 3
from urllib.request import urlopen
u = urlopen("http://www.python.org")

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

2to3 Tool

14

• There is a tool (2to3) that can be used to
identify (and optionally fix) Python 2 code
that must be changed to work with Python 3

• It's a command-line tool:
bash % 2to3 myprog.py
...

• Critical point : 2to3 can help, but it does not
automate Python 2 to 3 porting

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

2to3 Example

15

• Consider this Python 2 program
printlinks.py
import urllib
import sys
from HTMLParser import HTMLParser

class LinkPrinter(HTMLParser):
 def handle_starttag(self,tag,attrs):
 if tag == 'a':
 for name,value in attrs:
 if name == 'href': print value

data = urllib.urlopen(sys.argv[1]).read()
LinkPrinter().feed(data)

• It prints all links on a web page

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

2to3 Example

16

• Here's what happens if you run 2to3 on it
bash % 2to3 printlinks.py
...
--- printlinks.py (original)
+++ printlinks.py (refactored)
@@ -1,12 +1,12 @@
-import urllib
+import urllib.request, urllib.parse, urllib.error
 import sys
-from HTMLParser import HTMLParser
+from html.parser import HTMLParser

 class LinkPrinter(HTMLParser):
 def handle_starttag(self,tag,attrs):
 if tag == 'a':
 for name,value in attrs:
- if name == 'href': print value
+ if name == 'href': print(value)
...

It identifies
lines that
must be
changed

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Fixed Code

17

• Here's an example of a fixed code (after 2to3)
import urllib.request, urllib.parse, urllib.error
import sys
from html.parser import HTMLParser

class LinkPrinter(HTMLParser):
 def handle_starttag(self,tag,attrs):
 if tag == 'a':
 for name,value in attrs:
 if name == 'href': print(value)

data = urllib.request.urlopen(sys.argv[1]).read()
LinkPrinter().feed(data)

• This is syntactically correct Python 3

• But, it still doesn't work. Do you see why?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Broken Code

18

• Run it
bash % python3 printlinks.py http://www.python.org
Traceback (most recent call last):
 File "printlinks.py", line 12, in <module>
 LinkPrinter().feed(data)
 File "/Users/beazley/Software/lib/python3.1/html/parser.py",
line 107, in feed
 self.rawdata = self.rawdata + data
TypeError: Can't convert 'bytes' object to str implicitly
bash %

Ah ha! Look at that!

• That is an I/O handling problem

• Important lesson : 2to3 didn't find it

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Actually Fixed Code

19

• This version works
import urllib.request, urllib.parse, urllib.error
import sys
from html.parser import HTMLParser

class LinkPrinter(HTMLParser):
 def handle_starttag(self,tag,attrs):
 if tag == 'a':
 for name,value in attrs:
 if name == 'href': print(value)

data = urllib.request.urlopen(sys.argv[1]).read()
LinkPrinter().feed(data.decode('utf-8'))

I added this one tiny bit (by hand)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Important Lessons

20

• A lot of things change in Python 3

• 2to3 only fixes really "obvious" things

• It does not, in general, fix I/O problems

• Imagine applying it to a huge framework

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 2

21

Working with Text

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Making Peace with Unicode

22

• In Python 3, all text is Unicode

• All strings are Unicode

• All text-based I/O is Unicode

• You really can't ignore it or live in denial

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unicode For Mortals

23

• I teach a lot of Python training classes

• I rarely encounter programmers who have a
solid grasp on Unicode details (or who even
care all that much about it to begin with)

• What follows : Essential details of Unicode
that all Python 3 programmers must know

• You don't have to become a Unicode expert

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Text Representation

24

• Old-school programmers know about ASCII

• Each character has its own integer byte code

• Text strings are sequences of character codes

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unicode Characters

• Unicode is the same idea only extended

• It defines a standard integer code for every
character used in all languages (except for
fictional ones such as Klingon, Elvish, etc.)

• The numeric value is known as a "code point"

• Typically denoted U+HHHH in conversation

25

ñ
ε
!
㌄

= U+00F1
= U+03B5
= U+0A87
= U+3304

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unicode Charts

• A major problem : There are a lot of codes

• Largest supported code point U+10FFFF

• Code points are organized into charts

26

• Go there and you will find charts organized by
language or topic (e.g., greek, math, music, etc.)

http://www.unicode.org/charts

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unicode Charts

27

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unicode String Literals

28

t = "That's a spicy jalapeño!"

• Strings can now contain any unicode character

• Example:

• Problem : How do you indicate such characters?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Using a Unicode Editor

29

t = "That's a spicy Jalapeño!"

• If you are using a Unicode-aware editor, you can
type the characters in source code (save as UTF-8)

• Example : "Character & Keyboard" viewer (Mac)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Using Unicode Charts

30

t = "That's a spicy Jalape\u00f1o!"

• \uxxxx - Embeds a Unicode code point in a string

• If you can't type it, use a code-point escape

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unicode Escapes

31

a = "\xf1" # a = 'ñ'
b = "\u210f" # b = 'ℏ'
c = "\U0001d122" # c = '𝄢'

• There are three Unicode escapes

• \xhh : Code points U+00 - U+FF

• \uhhhh : Code points U+0100 - U+FFFF

• \Uhhhhhhhh : Code points > U+10000

• Examples:

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Using Unicode Charts

32

t = "Spicy Jalape\N{LATIN SMALL LETTER N WITH TILDE}o!"

• \N{name} - Embeds a named character

• Code points also have descriptive names

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

• Don't overthink Unicode

• Unicode strings are mostly like ASCII strings
except that there is a greater range of codes

• Everything that you normally do with strings
(stripping, finding, splitting, etc.) still work, but
are expanded

33

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

A Caution

34

• Unicode is mostly like ASCII except when it's not
>>> s = "Jalape\xf1o"
>>> t = "Jalapen\u0303o"
>>> s
'Jalapeño'
>>> t
'Jalapeño'
>>> s == t
False
>>> len(s), len(t)
(8, 9)
>>>

• Many tricky bits if you get into internationalization

• However, that's a different tutorial

'ñ' = 'n'+'˜' (combining ˜)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unicode Representation
• Internally, Unicode character codes are

stored as multibyte integers (16 or 32 bits)

35

t = "Jalapeño"

004a 0061 006c 0061 0070 0065 00f1 006f (UCS-2,16-bits)
0000004a 0000006a 0000006c 00000070 ... (UCS-4,32-bits)

• You can find out using the sys module
>>> sys.maxunicode
65535 # 16-bits

>>> sys.maxunicode
1114111 # 32-bits

• In C, it means a 'short' or 'int' is used

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Memory Use
• Yes, text strings in Python 3 require either 2x

or 4x as much memory to store as Python 2

• For example: Read a 10MB ASCII text file

36

data = open("bigfile.txt").read()

>>> sys.getsizeof(data) # Python 2.6
10485784

>>> sys.getsizeof(data) # Python 3.1 (UCS-2)
20971578

>>> sys.getsizeof(data) # Python 3.1 (UCS-4)
41943100

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Performance Impact
• Increased memory use does impact the

performance of string operations that make
copies of large substrings

• Slices, joins, split, replace, strip, etc.

• Example:

37

timeit("text[:-1]","text='x'*100000")

Python 2.6.4 (bytes) : 11.5 s
Python 3.1.1 (UCS-2) : 24.1 s
Python 3.1.1 (UCS-4) : 47.1 s

• There are more bytes moving around

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Performance Impact

• Operations that process strings character
often run at the same speed (or are faster)

• lower, upper, find, regexs, etc.

• Example:

38

timeit("text.upper()","text='x'*1000")

Python 2.6.4 (bytes) : 9.3s
Python 3.1.1 (UCS-2) : 6.9s
Python 3.1.1 (UCS-4) : 7.0s

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

• Yes, text representation has an impact

• In your programs, you can work with text in
the same way as you always have (text
representation is just an internal detail)

• However, know that the performance may
vary from 8-bit text strings in Python 2

• Study it if working with huge amounts of text

39

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Issue : Text Encoding
• The internal representation of characters is now

almost never the same as how text is transmitted
or stored in files

40

00000048 00000065 0000006c 0000006c
0000006f 00000020 00000057 0000006f
00000072 0000006c 00000064 0000000a

Text File Hello World

File content
(ASCII bytes)

48 65 6c 6c 6f 20 57 6f 72 6c 64 0a

Python String
Representation

(UCS-4, 32-bit ints)

read() write()

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Issue : Text Encoding
• There are also many possible file encodings

for text (especially for non-ASCII)

41

latin-1
"Jalapeño"

4a 61 6c 61 70 65 f1 6f

cp437 4a 61 6c 61 70 65 a4 6f

utf-8 4a 61 6c 61 70 65 c3 b1 6f

utf-16 ff fe 4a 00 61 00 6c 00 61 00
70 00 65 00 f1 00 6f 00

• Emphasize : They are only related to how
text is stored in files, not stored in memory

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

I/O Encoding
• All text is now encoded and decoded

• If reading text, it must be decoded from its
source format into Python strings

• If writing text, it must be encoded into some
kind of well-known output format

• This is a major difference between Python 2
and Python 3. In Python 2, you could write
programs that just ignored encoding and
read text as bytes (ASCII).

42

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Reading/Writing Text
• Built-in open() function has an optional

encoding parameter

43

f = open("somefile.txt","rt",encoding="latin-1")

• If you omit the encoding, UTF-8 is assumed
>>> f = open("somefile.txt","rt")
>>> f.encoding
'UTF-8'
>>>

• Also, in case you're wondering, text file modes
should be specified as "rt","wt","at", etc.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Standard I/O
• Standard I/O streams also have encoding

44

>>> import sys
>>> sys.stdin.encoding
'UTF-8'
>>> sys.stdout.encoding
'UTF-8'
>>>

• Be aware that the encoding might change
depending on the locale settings
>>> import sys
>>> sys.stdout.encoding
'US-ASCII'
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Binary File Modes

• Writing text on binary-mode files is an error

45

>>> f = open("foo.bin","wb")
>>> f.write("Hello World\n")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: must be bytes or buffer, not str
>>>

• For binary I/O, Python 3 will never implicitly
encode unicode strings and write them

• You must either use a text-mode file or
explicitly encode (str.encode('encoding'))

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Important Encodings

• If you're not doing anything with Unicode
(e.g., just processing ASCII files), there are
still three encodings you should know

• ASCII

• Latin-1

• UTF-8

• Will briefly describe each one

46

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

ASCII Encoding
• Text that is restricted to 7-bit ASCII (0-127)

• Any characters outside of that range
produce an encoding error

47

>>> f = open("output.txt","wt",encoding="ascii")
>>> f.write("Hello World\n")
12
>>> f.write("Spicy Jalapeño\n")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode
character '\xf1' in position 12: ordinal not in
range(128)
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Latin-1 Encoding
• Text that is restricted to 8-bit bytes (0-255)

• Byte values are left "as-is"

48

>>> f = open("output.txt","wt",encoding="latin-1")
>>> f.write("Spicy Jalapeño\n")
15
>>>

• Most closely emulates Python 2 behavior

• Also known as "iso-8859-1" encoding

• Pro tip: This is the fastest encoding for pure
8-bit text (ASCII files, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

UTF-8 Encoding
• A multibyte encoding that can represent all

Unicode characters

49

Encoding Description
0nnnnnnn ASCII (0-127)
110nnnnn 10nnnnnn U+007F-U+07FF
1110nnnn 10nnnnnn 10nnnnnn U+0800-U+FFFF
11110nnn 10nnnnnn 10nnnnnn 10nnnnnn U+10000-U+10FFFF

• Example:
ñ = 0xf1 = 11110001

 = 11000011 10110001 = 0xc3 0xb1 (UTF-8)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

UTF-8 Encoding

50

• Main feature of UTF-8 is that ASCII is
embedded within it

• If you're never working with international
characters, UTF-8 will work transparently

• Usually a safe default to use when you're not
sure (e.g., passing Unicode strings to
operating system functions, interfacing with
foreign software, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Interlude

• If migrating from Python 2, keep in mind

• Python 3 strings use multibyte integers

• Python 3 always encodes/decodes I/O

• If you don't say anything about encoding,
Python 3 assumes UTF-8

• Everything that you did before should work
just fine in Python 3 (probably)

51

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New Printing

• In Python 3, print() is used for text output

• Here is a mini porting guide

52

Python 2

print x,y,z
print x,y,z,
print >>f,x,y,z

Python 3

print(x,y,z)
print(x,y,z,end=' ')
print(x,y,z,file=f)

• However, print() has a few new tricks not
available in Python 2

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Printing Enhancements

• Picking a different item separator

53

>>> print(1,2,3,sep=':')
1:2:3
>>> print("Hello","World",sep='')
HelloWorld
>>>

• Picking a different line ending
>>> print("What?",end="!?!\n")
What?!?!
>>>

• Relatively minor, but these features are often
requested (e.g., "how do I get rid of the space?")

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Discussion : New Idioms

• In Python 2, you might have code like this

54

print ",".join([name,shares,price])

• Which of these is better in Python 3?
print(",".join([name,shares,price]))

print(name, shares, price, sep=",")

• Overall, I think I like the second one (even
though it runs a little bit slower)

- or -

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New String Formatting

• Python 3 has completely revised formatting

• Here is old Python (%)

55

s = "%10s %10d %10.2f" % (name, shares, price)

• Here is Python 3
s = "{0:10s} {1:10d} {2:10.2f}".format(name,shares,price)

• You might find the new formatting jarring

• Let's talk about it

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

First, Some History

• String formatting is one of the few features
of Python 2 that can't be customized

• Classes can define __str__() and __repr__()

• However, they can't customize % processing

• Python 2.6/3.0 adds a __format__() special
method that addresses this in conjunction
with some new string formatting machinery

56

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

String Conversions

• Objects now have three string conversions

57

>>> x = 1/3
>>> x.__str__()
'0.333333333333'
>>> x.__repr__()
'0.3333333333333333'
>>> x.__format__("0.2f")
'0.33'
>>> x.__format__("20.2f")
' 0.33'
>>>

• You will notice that __format__() takes a
code similar to those used by the % operator

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

format() function

• format(obj, fmt) calls __format__

58

>>> x = 1/3
>>> format(x,"0.2f")
'0.33'
>>> format(x,"20.2f")
' 0.33'
>>>

• This is analogous to str() and repr()
>>> str(x)
'0.333333333333'
>>> repr(x)
'0.3333333333333333'
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Format Codes (Builtins)
• For builtins, there are standard format codes

59

Old Format New Format Description
"%d" "d" Decimal Integer
"%f" "f" Floating point
"%s" "s" String
"%e" "e" Scientific notation
"%x" "x" Hexadecimal

• Plus there are some brand new codes
 "o" Octal
 "b" Binary
 "%" Percent

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Format Examples

• Examples of simple formatting

60

>>> x = 42
>>> format(x,"x")
'2a'
>>> format(x,"b")
'101010'
>>> y = 2.71828
>>> format(y,"f")
'2.718280'
>>> format(y,"e")
'2.718280e+00'
>>> format(y,"%")
'271.828000%'

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Format Modifiers

• Field width and precision modifiers

61

[width][.precision]code

• Examples:
>>> y = 2.71828
>>> format(y,"0.2f")
'2.72'
>>> format(y,"10.4f")
' 2.7183'
>>>

• This is exactly the same convention as with
the legacy % string formatting

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Alignment Modifiers
• Alignment Modifiers

62

[<|>|^][width][.precision]code

< left align
> right align
^ center align

• Examples:
>>> y = 2.71828
>>> format(y,"<20.2f")
'2.72 '
>>> format(y,"^20.2f")
' 2.72 '
>>> format(y,">20.2f")
' 2.72'
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Fill Character

• Fill Character

63

[fill][<|>|^][width][.precision]code

• Examples:
>>> x = 42
>>> format(x,"08d")
'00000042'
>>> format(x,"032b")
'00000000000000000000000000101010'
>>> format(x,"=^32d")
'===============42==============='
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thousands Separator

• Insert a ',' before the precision specifier

64

[fill][<|>|^][width][,][.precision]code

• Examples:
>>> x = 123456789
>>> format(x,",d")
'123,456,789'
>>> format(x,"10,.2f")
'123,456,789.00'
>>>

• This is pretty new (see PEP 378)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Discussion

• As you can see, there's a lot of flexibility in
the new format method (there are other
features not shown here)

• User-defined objects can also completely
customize their formatting if they implement
__format__(self,fmt)

65

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

String .format() Method

• Strings have .format() method for formatting
multiple values at once (replacement for %)

66

>>> "{0:10s} {1:10d} {2:10.2f}".format('ACME',50,91.10)
'ACME 50 91.10'
>>>

• format() method looks for formatting
specifiers enclosed in { } and expands them

• Each {} is similar to a %fmt specifier with the
old string formatting

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Format Specifiers

• Each specifier has the form : {what:fmt}

• what. Indicates what is being formatted
(refers to one of the arguments supplied
to the format() method)

• fmt. A format code. The same as what is
supplied to the format() function

• Each {what:fmt} gets replaced by the result of
format(what,fmt)

67

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Formatting Illustrated

• Arguments formatted in order {:fmt}

68

"{:10s} {:10d} {:10.2f}".format('ACME',50,91.10)

• Arguments specified by position {n:fmt}
"{0:10s} {2:10.2f}".format('ACME',50,91.10)

• Arguments specified by keyword {key:fmt}
"{name:10s} {price:10.2f}".format(name='ACME',price=91.10)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Container Lookups

• You can index sequences and dictionaries

69

>>> stock = ('ACME',50,91.10)
>>> "{s[0]:10s} {s[2]:10.2f}".format(s=stock)
'ACME 91.10'

>>> stock = {'name':'ACME', 'shares':50, 'price':91.10 }
>>> "{0[name]:10s} {0[price]:10.2f}".format(stock)
'ACME 91.10'
>>>

• Restriction : You can't put arbitrary expressions
in the [] lookup (has to be a number or simple
string identifier)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Attribute Access

• You can refer to instance attributes

70

class Stock(object):
 def __init__(self,name,shares,price):
 self.name = name
 self.shares = shares
 self.price = price

>>> s = Stock('ACME',50,91.10)
>>> "{0.name:10s} {0.price:10.2f}".format(s)
'ACME 91.10'
>>>

• Commentary : Nothing remotely like this with
the old string formatting operator

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Nested Format Expansion

71

• .format() allows one level of nested lookups in
the format part of each {}

>>> s = ('ACME',50,91.10)
>>> "{0:{width}s} {2:{width}.2f}".format(*s,width=12)
'ACME 91.10'
>>>

• Probably best not to get too carried away in
the interest of code readability though

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Other Formatting Details

72

• { and } must be escaped if part of formatting

• Use '{{ for '{'

• Use '}}' for '}'

• Example:

>>> "The value is {{{0}}}".format(42)
'The value is {42}'
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

73

• The new string formatting is very powerful

• However, I'll freely admit that it still feels very
foreign to me (maybe it's due to my long
history with using printf-style formatting)

• Python 3 still has the % operator, but it may
go away some day (I honestly don't know).

• All things being equal, you probably want to
embrace the new formatting

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 3

74

Binary Data Handling and Bytes

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Bytes and Byte Arrays

75

• Python 3 has support for "byte-strings"

• Two new types : bytes and bytearray

• They are quite different than Python 2 strings

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Defining Bytes

76

• Here's how to define byte "strings"
a = b"ACME 50 91.10" # Byte string literal
b = bytes([1,2,3,4,5]) # From a list of integers
c = bytes(10) # An array of 10 zero-bytes
d = bytes("Jalapeño","utf-8") # Encoded from string

>>> type(a)
<class 'bytes'>
>>>

• All of these define an object of type "bytes"

• However, this new bytes object is an odd duck

• Can also create from a string of hex digits
e = bytes.fromhex("48656c6c6f")

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Bytes as Strings

77

• Bytes have standard "string" operations
>>> s = b"ACME 50 91.10"
>>> s.split()
[b'ACME', b'50', b'91.10']
>>> s.lower()
b'acme 50 91.10'
>>> s[5:7]
b'50'

• And bytes are immutable like strings
>>> s[0] = b'a'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'bytes' object does not support item assignment

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Bytes as Integers

78

• Unlike Python 2, bytes are arrays of integers
>>> s = b"ACME 50 91.10"
>>> s[0]
65
>>> s[1]
67
>>>

• Same for iteration
>>> for c in s: print(c,end=' ')
65 67 77 69 32 53 48 32 57 49 46 49 48
>>>

• Hmmmm. Curious.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

bytearray objects

79

• A bytearray is a mutable bytes object
>>> s = bytearray(b"ACME 50 91.10")
>>> s[:4] = b"PYTHON"
>>> s
bytearray(b"PYTHON 50 91.10")
>>> s[0] = 0x70 # Must assign integers
>>> s
bytearray(b'pYTHON 50 91.10")
>>>

• It also gives you various list operations
>>> s.append(23)
>>> s.append(45)
>>> s.extend([1,2,3,4])
>>> s
bytearray(b'ACME 50 91.10\x17-\x01\x02\x03\x04')
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

An Observation

80

• bytes and bytearray are not really meant to
mimic Python 2 string objects

• They're closer to array.array('B',...) objects
>>> import array
>>> s = array.array('B',[10,20,30,40,50])
>>> s[1]
20
>>> s[1] = 200
>>> s.append(100)
>>> s.extend([65,66,67])
>>> s
array('B', [10, 200, 30, 40, 50, 100, 65, 66, 67])
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Bytes and Strings

81

• Bytes are not meant for text processing

• In fact, if you try to use them for text, you will
run into weird problems

• Python 3 strictly separates text (unicode) and
bytes everywhere

• This is probably the most major difference
between Python 2 and 3.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Mixing Bytes and Strings

82

• Mixed operations fail miserably
>>> s = b"ACME 50 91.10"
>>> 'ACME' in s
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Type str doesn't support the buffer API
>>>

• Huh?!?? Buffer API?

• We'll cover that later...

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Printing Bytes

83

• Printing and text-based I/O operations do not
work in a useful way with bytes
>>> s = b"ACME 50 91.10"
>>> print(s)
b'ACME 50 91.10'
>>>

Notice the leading b' and trailing
quote in the output.

• There's no way to fix this. print() should only
be used for outputting text (unicode)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Formatting Bytes

84

• Bytes do not support operations related to
formatted output (%, .format)
>>> s = b"%0.2f" % 3.14159
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for %: 'bytes' and
'float'
>>>

• So, just forget about using bytes for any kind of
useful text output, printing, etc.

• No, seriously.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

85

• Why am I focusing on this "bytes as text" issue?

• If you are writing scripts that do simple ASCII
text processing, you might be inclined to use
bytes as a way to avoid the overhead of Unicode

• You might think that bytes are exactly the same
as the familiar Python 2 string object

• This is wrong. Bytes are not text. Using bytes as
text will lead to convoluted non-idiomatic code

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

How to Use Bytes

86

• To use the bytes objects, focus on problems
related to low-level I/O handling (message
passing, distributed computing, etc.)

• I will show some examples that illustrate

• A complaint: documentation (online and
books) is extremely thin on explaining
practical uses of bytes and bytearray objects

• Hope to rectify that a little bit here

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : Reassembly

87

• In Python 2, you may know that string
concatenation leads to bad performance

msg = ""
while True:
 chunk = s.recv(BUFSIZE)
 if not chunk:
 break
 msg += chunk

• Here's the common workaround (hacky)
chunks = []
while True:
 chunk = s.recv(BUFSIZE)
 if not chunk:
 break
 chunks.append(chunk)
msg = b"".join(chunks)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : Reassembly

88

• Here's a new approach in Python 3
msg = bytearray()
while True:
 chunk = s.recv(BUFSIZE)
 if not chunk:
 break
 msg.extend(chunk)

• You treat the bytearray as a list and just
append/extend new data at the end as you go

• I like it. It's clean and intuitive.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example: Reassembly

89

• The performance is good too

• Concat 1024 32-byte chunks together (10000x)

Concatenation : 18.49s
Joining : 1.55s
Extending a bytearray : 1.78s

• There are many parts of the Python standard
library that might benefit (e.g., ByteIO objects,
WSGI, multiprocessing, pickle, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example: Record Packing

90

• Suppose you wanted to use the struct module
to incrementally pack a large binary message
objs = [...] # List of tuples to pack
msg = bytearray() # Empty message

First pack the number of objects
msg.extend(struct.pack("<I",len(objs)))

Incrementally pack each object
for x in objs:
 msg.extend(struct.pack(fmt, *x))

Do something with the message
f.write(msg)

• I like this as well.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Comment : Writes

91

• The previous example is one way to avoid
making lots of small write operations

• Instead you collect data into one large message
that you output all at once.

• Improves I/O performance and code is nice

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : Calculations

92

• Run a byte array through an XOR-cipher
>>> s = b"Hello World"
>>> t = bytes(x^42 for x in s)
>>> t
b'bOFFE\n}EXFN'
>>> bytes(x^42 for x in t)
b'Hello World'
>>>

• Compute and append a LRC checksum to a msg
Compute the checksum and append at the end
chk = 0
for n in msg:
 chk ^= n
msg.append(chk)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

93

• I'm excited about the new bytearray object

• Many potential uses in building low-level
infrastructure for networking, distributed
computing, messaging, embedded systems, etc.

• May make much of that code cleaner, faster, and
more memory efficient

• Still more features to come...

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 4

94

System Interfaces

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

System Interfaces

95

• Major parts of the Python library are related to
low-level systems programming, sysadmin, etc.

• os, os.path, glob, subprocess, socket, etc.

• Unfortunately, there are some really sneaky
aspects of using these modules with Python 3

• It concerns the Unicode/Bytes separation

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The Problem

96

• To carry out system operations, the Python
interpreter executes standard C system calls

• For example, POSIX calls on Unix

int fd = open(filename, O_RDONLY);

• However, names used in system interfaces (e.g.,
filenames, program names, etc.) are specified as
byte strings (char *)

• Bytes also used for environment variables and
command line options

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Question

97

• How does Python 3 integrate strings (Unicode)
with byte-oriented system interfaces?

• Examples:

• Filenames

• Command line arguments (sys.argv)

• Environment variables (os.environ)

• Note: You should care about this if you use
Python for various system tasks

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Name Encoding

98

• Standard practice is for Python 3 to UTF-8
encode all names passed to system calls

f = open("somefile.txt","wt")

open("somefile.txt",O_WRONLY)

encode('utf-8')

Python :

C/syscall :

• This is usually a safe bet

• ASCII is a subset and UTF-8 is an extension that
most operating systems support

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Arguments & Environ

99

• Similarly, Python decodes arguments and
environment variables using UTF-8

TERM=xterm-color
SHELL=/bin/bash
USER=beazley
PATH=/usr/bin:/bin:/usr/sbin:...
LANG=en_US.UTF-8
HOME=/Users/beazley
LOGNAME=beazley
...

decode('utf-8')

Python 3:

bash % python foo.py arg1 arg2 ... sys.argv

os.environ

decode('utf-8')

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Lurking Danger

100

• Be aware that some systems accept, but do not
strictly enforce UTF-8 encoding of names

• This is extremely subtle, but it means that names
used in system interfaces don't necessarily
match the encoding that Python 3 wants

• Will show a pathological example to illustrate

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : A Bad Filename

101

• Start Python 2.6 on Linux and create a file using
the open() function like this:

>>> f = open("jalape\xf1o.txt","w")
>>> f.write("Bwahahahaha!\n")
>>> f.close()

• This creates a file with a single non-ASCII byte
(\xf1, 'ñ') embedded in the filename

• The filename is not UTF-8, but it still "works"

• Question: What happens if you try to do
something with that file in Python 3?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : A Bad Filename

102

• Python 3 won't be able to open the file
>>> f = open("jalape\xf1o.txt")
Traceback (most recent call last):
...
IOError: [Errno 2] No such file or directory: 'jalapeño.txt'
>>>

• This is caused by an encoding mismatch
"jalape\xf1o.txt"

b"jalape\xc3\xb1o.txt"

UTF-8

open()

Fails! b"jalape\xf1o.txt"

It fails because this is
the actual filename

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : A Bad Filename

103

• Bad filenames cause weird behavior elsewhere

• Directory listings

• Filename globbing

• Example : What happens if a non UTF-8 name
shows up in a directory listing?

• In early versions of Python 3, such names were
silently discarded (made invisible). Yikes!

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Names as Bytes

104

• You can specify filenames using byte strings
instead of strings as a workaround

>>> f = open(b"jalape\xf1o.txt")
>>>

>>> files = glob.glob(b"*.txt")
>>> files
[b'jalape\xf1o.txt', b'spam.txt']
>>>

Notice bytes

• This turns off the UTF-8 encoding and returns
all results as bytes

• Note: Not obvious and a little hacky

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Surrogate Encoding

105

• In Python 3.1, non-decodable (bad) characters in
filenames and other system interfaces are
translated using "surrogate encoding" as
described in PEP 383.

• This is a Python-specific "trick" for getting
characters that don't decode as UTF-8 to pass
through system calls in a way where they still
work correctly

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Surrogate Encoding

106

• Idea : Any non-decodable bytes in the range
0x80-0xff are translated to Unicode characters
U+DC80-U+DCFF

• Example:
b"jalape\xf1o.txt"

"jalape\udcf1o.txt"
surrogate encoding

• Similarly, Unicode characters U+DC80-U+DCFF
are translated back into bytes 0x80-0xff when
presented to system interfaces

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Surrogate Encoding

107

• You will see this used in various library functions
and it works for functions like open()

• Example:
>>> glob.glob("*.txt")
['jalape\udcf1o.txt', 'spam.txt']

>>> f = open("jalape\udcf1o.txt")
>>>

notice the odd unicode character

• If you ever see a \udcxx character, it means that
a non-decodable byte was passed in from a
system interface

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Surrogate Encoding

108

• Question : Does this break part of Unicode?

• Answer : Unsure

• This uses a range of Unicode dedicated for a
feature known as "surrogate pairs". A pair of
Unicode characters encoded like this

(U+D800-U+DBFF, U+DC00-U+DFFF)

• In Unicode, you would never see a U+DCxx
character appearing all on its own

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Caution : Printing

109

• Non-decodable bytes will break print()
>>> files = glob.glob("*.txt")
>>> files
['jalape\udcf1o.txt', 'spam.txt']
>>> for name in files:
... print(name)
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'utf-8' codec can't encode character
'\udcf1' in position 6: surrogates not allowed
>>>

• Arg! If you're using Python for file manipulation
or system administration you need to be careful

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Implementation

110

• Surrogate encoding is implemented as an error
handler for encode() and decode()

• Example:
>>> s = b"jalape\xf1o.txt"
>>> t = s.decode('utf-8','surrogateescape')
>>> t
'jalape\udcf1o.txt'

>>> t.encode('utf-8','surrogateescape')
b'jalape\xf1o.txt'
>>>

• If you are porting code that deals with system
interfaces, you might need to do this

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

111

• This handling of Unicode in system interfaces is
also of interest to C/C++ extensions

• What happens if a C/C++ function returns an
improperly encoded byte string?

• What happens in ctypes? Swig?

• Seems unexplored (too obscure? new?)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 5

112

The io module

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

I/O Implementation

113

• I/O in Python 2 is largely based on C I/O

• For example, the "file" object is just a thin layer
over a C "FILE *" object

• Python 3 changes this

• In fact, Python 3 has a complete ground-up
reimplementation of the whole I/O system

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The open() function

114

• For files, you still use open() as you did before

• However, the result of calling open() varies
depending on the file mode and buffering

• Carefully study the output of this:

>>> open("foo.txt","rt")
<_io.TextIOWrapper name='foo.txt' encoding='UTF-8'>
>>> open("foo.txt","rb")
<_io.BufferedReader name='foo.txt'>
>>> open("foo.txt","rb",buffering=0)
<_io.FileIO name='foo.txt' mode='rb'>
>>>

Notice how
you're getting a
different kind of

result here

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The io module

115

• The core of the I/O system is implemented in
the io library module

• It consists of a collection of different I/O classes
FileIO
BufferedReader
BufferedWriter
BufferedRWPair
BufferedRandom
TextIOWrapper
BytesIO
StringIO

• Each class implements a different kind of I/O

• The classes get layered to add features

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Layering Illustrated

116

• Here's the result of opening a "text" file

open("foo.txt","rt")

TextIOWrapper

BufferedReader

FileIO

• Keep in mind: This is very different from Python 2

• Inspired by Java? (don't know, maybe)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

FileIO Objects

117

• An object representing raw unbuffered binary I/O

• FileIO(name [, mode [, closefd])

name : Filename or integer fd
mode : File mode ('r', 'w', 'a', 'r+',etc.)
closefd : Flag that controls whether close() called

• Under the covers, a FileIO object is directly
layered on top of operating system functions
such as read(), write()

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

FileIO Usage

118

• FileIO replaces os module functions

• Example : Python 2 (os module)
fd = os.open("somefile",os.O_RDONLY)
data = os.read(fd,4096)
os.lseek(fd,16384,os.SEEK_SET)
...

• Example : Python 3 (FileIO object)
f = io.FileIO("somefile","r")
data = f.read(4096)
f.seek(16384,os.SEEK_SET)
...

• It's a low-level file with a file-like interface (nice)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Direct System I/O

119

• FileIO directly exposes the behavior of low-level
system calls on file descriptors

• This includes:

• Partial read/writes

• Returning system error codes

• Blocking/nonblocking I/O handling

• System hackers want this

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Direct System I/O

120

• File operations (read/write) execute a single
system call no matter what

data = f.read(8192) # Executes one read syscall
f.write(data) # Executes one write syscall

• This might mean partial data (you must check)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

121

• FileIO is the most critical object in the I/O stack

• Everything else depends on it

• Nothing quite like it in Python 2

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

BufferedIO Objects

122

• The following classes implement buffered I/O
BufferedReader(f [, buffer_size])
BufferedWriter(f [, buffer_size [, max_buffer_size]])
BufferedRWPair(f_read, f_write
 [, buffer_size [, max_buffer_size]])
BufferedRandom(f [, buffer_size [, max_buffer_size]])

• Each of these classes is layered over a supplied
raw FileIO object (f)
f = io.FileIO("foo.txt") # Open the file (raw I/O)
g = io.BufferedReader(f) # Put buffering around it

f = io.BufferedReader(io.FileIO("foo.txt")) # Alternative

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Buffered Operations

123

• Buffered readers implement these methods
f.peek([n]) # Return up to n bytes of data without
 # advancing the file pointer

f.read([n]) # Return n bytes of data as bytes

f.read1([n]) # Read up to n bytes using a single
 # read() system call

• Other ops (seek, tell, close, etc.) work as well

• Buffered writers implement these methods
f.write(bytes) # Write bytes
f.flush() # Flush output buffers

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

TextIOWrapper

124

• The object that implements text-based I/O

TextIOWrapper(buffered [, encoding [, errors
 [, newline [, line_buffering]]]])

buffered - A buffered file object
encoding - Text encoding (e.g., 'utf-8')
errors - Error handling policy (e.g. 'strict')
newline - '', '\n', '\r', '\r\n', or None
line_buffering - Flush output after each line (False)

• It is layered on a buffered I/O stream
f = io.FileIO("foo.txt") # Open the file (raw I/O)
g = io.BufferedReader(f) # Put buffering around it
h = io.TextIOWrapper(g,"utf-8") # Text I/O wrapper

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

TextIOWrapper and codecs

125

• Python 2 used the codecs module for unicode

• TextIOWrapper It is a completely new object,
written almost entirely in C

• It kills codecs.open() in performance
for line in open("biglog.txt",encoding="utf-8"):
 pass

f = codecs.open("biglog.txt",encoding="utf-8")
for line in f:
 pass

53.3 sec

3.8 sec

Note: both tests performed using Python-3.1.1

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Putting it All Together

126

• As a user, you don't have to worry too much
about how the different parts of the I/O system
are put together (all of the different classes)

• The built-in open() function constructs the
proper set of IO objects depending on the
supplied parameters

• Power users might use the io module directly
for more precise control over special cases

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

open() Revisited

127

• Here is the full prototype
open(name [, mode [, buffering [, encoding [, errors
 [, newline [, closefd]]]]]])

• The different parameters get passed to
underlying objects that get created
name
mode
closefd

buffering

encoding
errors
newline

FileIO

BufferedReader, BufferedWriter

TextIOWrapper

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

open() Revisited

128

• The type of IO object returned depends on the
supplied mode and buffering parameters

mode buffering Result

any binary 0 FileIO
"rb" != 0 BufferedReader
"wb","ab" != 0 BufferedWriter
"rb+","wb+","ab+" != 0 BufferedRandom
any text != 0 TextIOWrapper

• Note: Certain combinations are illegal and will
produce an exception (e.g., unbuffered text)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unwinding the I/O Stack

129

• Sometimes you might need to unwind a file

• Scenario : You were given an open text-mode
file, but want to use it in binary mode

open("foo.txt","rt")

TextIOWrapper

BufferedReader

FileIO

.buffer

.raw

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

I/O Performance

130

• Question : How does new I/O perform?

• Will compare:

• Python 2.6.4 built-in open()

• Python 3.1.1 built-in open()

• Note: This is not exactly a fair test--the Python 3
open() has to decode Unicode text

• However, it's realistic, because most programmers
use open() without thinking about it

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

I/O Performance

131

• Read a 100 Mbyte text file all at once
data = open("big.txt").read()

Python 2.6.4 : 0.16s
Python 3.1 (UCS-2, UTF-8) : 0.95s
Python 3.1 (UCS-4, UTF-8) : 1.67s

• Read a 100 Mbyte binary file all at once
data = open("big.bin","rb").read()

Python 2.6.4 : 0.16s
Python 3.1 (UCS-2, UTF-8) : 0.16s
Python 3.1 (UCS-4, UTF-8) : 0.16s

(I couldn't observe any
noticeable difference)

Yes, you get
overhead due to

text decoding

• Note: tests conducted with warm disk cache

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

I/O Performance

132

• Write a 100 Mbyte text file all at once
open("foo.txt","wt").write(text)

Python 2.6.4 : 2.30s
Python 3.1 (UCS-2, UTF-8) : 2.47s
Python 3.1 (UCS-4, UTF-8) : 2.55s

• Write a 100 Mbyte binary file all at once
data = open("big.bin","wb").write(data)

Python 2.6.4 : 2.16s
Python 3.1 (UCS-2, UTF-8) : 2.16s
Python 3.1 (UCS-4, UTF-8) : 2.16s

(I couldn't observe any
noticeable difference)

• Note: tests conducted with warm disk cache

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

I/O Performance

133

• Iterate over 730000 lines of a big log file (text)
for line in open("biglog.txt"):
 pass

Python 2.6.4 : 0.24s
Python 3.1 (UCS-2, UTF-8) : 0.57s
Python 3.1 (UCS-4, UTF-8) : 0.82s

• Iterate over 730000 lines of a log file (binary)

Python 2.6.4 : 0.24s
Python 3.1 (UCS-2, UTF-8) : 0.29s
Python 3.1 (UCS-4, UTF-8) : 0.29s

for line in open("biglog.txt","rb"):
 pass

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

I/O Performance

134

• Write 730000 lines log data (text)
open("biglog.txt","wt").writelines(lines)

Python 2.6.4 : 1.3s
Python 3.1 (UCS-2, UTF-8) : 1.4s
Python 3.1 (UCS-4, UTF-8) : 1.4s

• Write 730000 lines of log data (binary)

Python 2.6.4 : 1.3s
Python 3.1 (UCS-2, UTF-8) : 1.3s
Python 3.1 (UCS-4, UTF-8) : 1.3s

for line in open("biglog.txt","wb"):
 pass

Note: higher variance in
observed times. These
are 10 sample averages

(rough ballpark)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

135

• For binary, the Python 3 I/O system is
comparable to Python 2 in performance

• Text based I/O has an unavoidable penalty

• Extra decoding (UTF-8)

• An extra memory copy

• You might be able to minimize the decoding
penalty by specifying 'latin-1' (fastest)

• The memory copy can't be eliminated

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

136

• Reading/writing always involves bytes

"Hello World" -> 48 65 6c 6c 6f 20 57 6f 72 6c 64

• To get it to Unicode, it has to be copied to
multibyte integers (no workaround)

48 65 6c 6c 6f 20 57 6f 72 6c 64

0048 0065 006c 006c 006f 0020 0057 006f 0072 006c 0064

Unicode conversion

• The only way to avoid this is to never convert
bytes into a text string (not always practical)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Advice

137

• Heed the advice of the optimization gods---ask
yourself if it's really worth worrying about
(premature optimization as the root of all evil)

• No seriously... does it matter for your app?

• If you are processing huge (no, gigantic) amounts
of 8-bit text (ASCII, Latin-1, UTF-8, etc.) and I/O
has been determined to be the bottleneck, there
is one approach to optimization that might work

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Text Optimization

138

• Perform all I/O in binary/bytes and defer
Unicode conversion to the last moment

• If you're filtering or discarding huge parts of the
text, you might get a big win

• Example : Log file parsing

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example

139

• Find all URLs that 404 in an Apache log

140.180.132.213 - - [...] "GET /ply/ply.html HTTP/1.1" 200 97238
140.180.132.213 - - [...] "GET /favicon.ico HTTP/1.1" 404 133

• Processing everything as text
error_404_urls = set()
for line in open("biglog.txt"):
 fields = line.split()
 if fields[-2] == '404':
 error_404_urls.add(fields[-4])

for name in error_404_urls:
 print(name) Python 2.6.4 : 1.21s

Python 3.1 (UCS-2) : 2.12s
Python 3.1 (UCS-4) : 2.56s

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example Optimization

140

• Deferred text conversion
error_404_urls = set()
for line in open("biglog.txt","rb"):
 fields = line.split()
 if fields[-2] == b'404':
 error_404_urls.add(fields[-4])

for name in error_404_urls:
 print(name.decode('latin-1'))

Python 2.6.4 : 1.21s
Python 3.1 (UCS-2) : 1.21s
Python 3.1 (UCS-4) : 1.26s

Unicode conversion here

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 6

141

Standard Library Issues

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Text, Bytes, and the Library

142

• In Python 2, you could be sloppy about the
distinction between text and bytes in many
library functions

• Networking modules

• Data handling modules

• Various sorts of conversions

• In Python 3, you must be very precise

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : Socket Sends

143

• Here's a skeleton of some sloppy Python 2 code

• This is almost guaranteed to break

• Reason : Almost every library function that
communicates with the outside world (sockets,
urllib, SocketServer, etc.) now uses binary I/O

• So, text operations are going to fail

def send_response(s,code,msg):
 s.sendall("HTTP/1.0 %s %s\r\n" % (code,msg))

send_response(s,"200","OK")

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : Socket Sends

144

• In Python 3, you must explicitly encode text

• Commentary : You really should have been doing
this in Python 2 all along

def send_response(s,code,msg):
 resp = "HTTP/1.0 {:s} {:s}\r\n".format(code,msg)
 s.sendall(resp.encode('ascii'))

send_response(s,"200","OK")

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Rules of Thumb

145

• All incoming text data must be decoded
rawmsg = s.recv(16384) # Read from a socket
msg = rawmsg.decode('utf-8') # Decode
...

• All outgoing text data must be encoded
rawmsg = msg.encode('ascii')
s.send(rawmsg)
...

• Code most affected : anything that's directly
working with low-level network protocols
(HTTP, SMTP, FTP, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Tricky Text Conversions

146

• Certain "text" conversions in the library do not
produce unicode text strings

• Base 64, quopri, binascii

• Example:
>>> a = b"Hello"
>>> print(binascii.b2a_hex(a))
b'48656c6c6f'
>>> print(base64.b64encode(a))
b'SGVsbG8='
>>>

bytes

• Need to be careful if using these to embed data
in text file formats (e.g., XML, JSON, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

147

• When updating the Python Essential Reference
to cover Python 3 features, byte/string issues in
the standard library were one of the most
frequently encountered problems

• Documentation not updated to correctly to
indicate the requirement of bytes

• Various bugs in network/internet related code
due to byte/string separation

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 7

148

Memory Views and I/O

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Memory Buffers

149

• Many objects in Python consist of contiguously
allocated memory regions

• Byte strings and byte arrays

• Arrays (created by array module)

• ctypes arrays/structures

• Numpy arrays (not py3k yet)

• These objects have a special relationship with
the I/O system

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Direct I/O with Buffers

150

• Objects consisting of contiguous memory
regions can be used with I/O operations without
making extra buffer copies

Array
bytes

write()read()

• reads and writes can be made to work directly
with the underlying memory buffer

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Direct Writing

151

• write() and send() operations already know
about array-like objects
>>> f = open("data.bin","wb") # File in binary mode

>>> s = bytearray(b"Hello World\n") # Write a byte array
>>> f.write(s)
12

>>> import array
>>> a = array.array("i",[0,1,2,3,4,5])
>>> f.write(a) # Write an int array
24

Notice : An array of integers was written
without any intermediate conversion

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Direct Reading

152

• You can read into an existing buffer/array using
readinto() (and other *_into() variants)

>>> f = open("data.bin","rb") # File in binary mode

>>> s = bytearray(12) # Preallocate an array
>>> s
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
>>> f.readinto(s) # Read into it
12
>>> s
bytearray(b'Hello World\n')
>>>

• readinto() fills the supplied buffer and returns
the actual number of bytes read

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Direct Reading

153

• Direct reading works with other arrays too

>>> a = array.array('i',[0])*10
>>> a
array('i', [0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

>>> f.readinto(a)
24
>>> a
array('i', [0, 1, 2, 3, 4, 5, 0, 0, 0, 0])
>>>

• This is a feature that's meant to integrate well
with extensions such as ctypes, numpy, etc.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Direct Packing/Unpacking

154

• Direct access to memory buffers shows up in
other library modules as well

• For example: struct
struct.pack_into(fmt, buffer, offset, ...)
struct.unpack_from(fmt, buffer, offset)

• Example use:
>>> a = bytearray(10)
>>> a
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
>>> struct.pack_into("HH",a,4,0xaaaa,0xbbbb)
>>> a
bytearray(b'\x00\x00\x00\x00\xaa\xaa\xbb\xbb\x00\x00')
>>>

Notice in-place packing of values

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Record Packing Revisited

155

• An example of in-place record packing

objs = [...] # List of tuples to pack
fmt = "..." # Format code

recsize = struct.calcsize(fmt)
msg = bytearray(4+len(objs)*recsize)

First pack the number of objects
struct.pack_into("I",msg,0,len(objs))

Incrementally pack each object
for n,x in enumerate(objs):
 struct.pack_into(fmt,msg,4+n*recsize,*x)

Do something with the message
f.write(msg)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

memoryview Objects

156

• Direct I/O, in-place packing, and other features
are tied to the buffer API (C) and memoryviews
>>> a = b"Hello World"
>>> v = memoryview(a)
>>> v
<memory at 0x45b210>
>>>

• A memory view directly exposes data as a buffer
of bytes that can be used in low-level operations

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

How Views Work

157

• A memory view is a memory overlay
>>> a = bytearray(10)
>>> a
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
>>> v = memoryview(a)
>>>

• If you read or modify the view, you're working
with the same memory as the original object
>>> v[0] = b'A'
>>> v[-5:] = b'World'
>>> a
bytearray(b'A\x00\x00\x00\x00World')
>>>

In-place modifications

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

How Views Work

158

• Memory views do not violate mutability
>>> s = b"Hello World"
>>> v = memoryview(s)
>>> v[0] = b'X'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot modify read-only memory
>>>

• That's good!

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

How Views Work

159

• Memory views make zero-copy slices
>>> a = bytearray(10)
>>> a
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00')
>>> v = memoryview(a)
>>> left = v[:5] # Make slices of the view
>>> right = v[5:]
>>> left[:] = b"Hello" # Reassign view slices
>>> right[:] = b"World"
>>> a # Look at original object
bytearray(b'HelloWorld')
>>>

• This differs from how slices usually work

• Normally, slices make data copies

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Practical Use of Views

160

• memoryviews are not something that casual
Python programmers should be using

• I would hate to maintain someone's code that
was filled with tons of memoryview hacks

• However, memoryviews have great potential for
programmers building libraries, frameworks, and
low-level infrastructure (e.g., distributed
computing, message passing, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Practical Uses of Views

161

• Examples:

• Incremental I/O processing

• Message encoding/decoding

• Integration with foreign software (C/C++)

• Big picture : It can be used to streamline the
connections between different components by
reducing memory copies

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Incremental Writing

162

• Create a massive bytearray (256MB)
>>> a = bytearray(range(256))*1000000
>>> len(a)
256000000
>>>

• Challenge : Blast the array through a socket

• Problem : If you know about sockets, you know
that a single send() operation won't send 256MB.

• You've got to break it down into smaller sends

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Incremental Writing

163

• Here's an example of incremental transmission
with memoryview slices
view = memoryview(a)
while view:
 nbytes = s.send(view)
 view = view[nbytes:] # This is a zero-copy slice

• This sweeps over the bytearray, sending it in
chunks, but never makes a memory copy

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Incremental Reading

164

• Suppose you wanted to incrementally read data
into an existing byte array until it's filled

a = bytearray(size)
view = memoryview(a)
while view:
 nbytes = s.recv_into(view)
 view = view[nbytes:]

• If you know how much data is being received in
advance, you can preallocate the array and
incrementally fill it (again, no copies)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

165

• Again, direct manipulation of memoryviews is
something you probably want to avoid

• However, be on the lookout for functions such
as read_into(), pack_into(), recv_into(), etc. in
the standard library

• These make use of views and can offer I/O
efficiency gains for programmers who know how
to use them effectively

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 8

166

Porting to Python 3
(and final words)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Big Picture

167

• I/O handling in Python 3 is so much more than
minor changes to Python syntax

• It's a top-to-bottom redesign of the entire I/O
stack that has new idioms and new features

• Question : If you're porting from Python 2, do
you want to stick with Python 2 idioms or do
you take full advantage of Python 3 features?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Python 2 Backport

168

• Almost everything discussed in this tutorial has
been back-ported to Python 2

• So, you can actually use most of the core
Python 3 I/O idioms in your Python 2 code now

• Caveat : try to use the most recent version of
Python 2 possible (e.g., Python 2.7)

• There is active development and bug fixes

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Porting Tips

169

• Make sure you very clearly separate bytes and
unicode in your application

• Use the byte literal syntax : b'bytes'

• Use bytearray() for binary data handling

• Use new text formatting idioms (.format, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Porting Tips

170

• When you're ready for it, switch to the new
open() and print() functions

from __future__ import print_function
from io import open

• This switches to the new IO stack

• If you application still works correctly, you're
well on your way to Python 3 compatibility

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Porting Tips

171

• Tests, tests, tests, tests, tests, tests...

• Don't even remotely consider the idea of
Python 2 to Python 3 port without unit tests

• I/O handling is only part of the process

• You want tests for other issues (changed
semantics of builtins, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Modernizing Python 2

172

• Even if Python 3 is not yet an option for other
reasons, you can take advantage of its I/O
handling idioms now

• I think there's a lot of neat new things

• Can benefit Python 2 programs in terms of
more elegant programming, improved efficiency

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

That's All Folks!

173

• Hope you learned at least one new thing

• Please feel free to contact me

http://www.dabeaz.com

• Also, I teach Python classes (shameless plug)

