Mastering Python 3 I/O

David Beazley
http://www.dabeaz.com

Presented at PyCon"2010
Atlanta, Georgia

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

This Tutorial

® |t's about a very specific aspect of Python 3
® Maybe the most important part of Python 3

® Namely, the reimplemented I/O system

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Why 1/O?

® Real programs interact with the world
® They read and write files
® They send and receive messages
® They don't compute Fibonacci numbers

® |/O is at the heart of almost everything that
Python is about (scripting, gluing, frameworks,
C extensions, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The I/O Problem

® Of all of the changes made in Python 3, it is
my observation that /O handling changes are
the most problematic for porting

® Python 3 re-implements the entire |/O stack
® Python 3 introduces new programming idioms

® |/O handling issues can't be fixed by automatic
code conversion tools (2to3)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The Plan

® We're going to take a detailed top-to-bottom
tour of the whole Python 3 I/O system

® Text handling

® Binary data handling

® System interfaces

® The new I/O stack

® Standard library issues

® Memory views, buffers, etc.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Prerequisites

® | assume that you are already reasonably
familiar with how I/O works in Python 2

® str vs. unicode

® print statement

® open() and file methods

® Standard library modules

® General awareness of I/O issues

® Prior experience with Python 3 not required

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Performance Disclosure

® There are some performance tests

® Execution environment for tests:
® 2.4 GHZ 4-Core MacPro, 3GB memory
® OS-X 10.6.2 (Snow Leopard)

® All Python interpreters compiled from
source using same config/compiler

® Tutorial is not meant to be a detailed
performance study so all results should be
viewed as rough estimates

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Let's Get Started

® | have made a few support files:

http://www.dabeaz.com/python3io/index.html

® You can try some of the examples as we go

® However, it is fine to just watch/listen and try
things on your own later

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Part |

Introducing Python 3

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Syntax Changes

® As you know, Python 3 changes syntax

® print is now a function print()

print("Hello World")
® Exception handling syntax changed slightly

try: added

except IOError as e:

® Yes, your old code will break

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Many New Features

® Python 3 introduces many new features

® Composite string formatting
"{0:10s} {1:10d} {2:10.2f}".format(name, shares, price)

® Dictionary comprehensions

a = {key.upper():value for key,value in d.items()}

® Function annotations

def square(x:int) -> int:
return xX*Xx

® Much more... but that's a different tutorial

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I I

Changed Built-ins

® Many of the core built-in operations change

® Examples : range(), zip(), etc.

>>>
>>>
>>>
>>>
<zip object at 0x100452950>
>>>

[1,2,3]
[4,5,6]
zip(a,b)

QaQuoe
nnn

® Typically related to iterators/generators

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 2

Library Reorganization

® The standard library has been cleaned up
® Especially network/internet modules

® Example : Python 2

from urllib2 import urlopen
u = urlopen("http://www.python.org")

® Example : Python 3

from urllib.request import urlopen
u = urlopen("http://www.python.org")

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

2to3 Tool

® There is a tool (2to3) that can be used to
identify (and optionally fix) Python 2 code
that must be changed to work with Python 3

® |t's a command-line tool:

bash % 2to3 myprog.py

® Critical point : 2to3 can help, but it does not
automate Python 2 to 3 porting

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

2to3 Example

® Consider this Python 2 program

printlinks.py

import urllib

import sys

from HTMLParser import HTMLParser

class LinkPrinter (HTMLParser):
def handle starttag(self,tag,attrs):

if tag == 'a':
for name,value in attrs:
if name == 'href': print value

data = urllib.urlopen(sys.argv[l]).read()
LinkPrinter().feed(data)

® |t prints all links on a web page

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 5

2to3 Example

® Here's what happens if you run 2to3 on it
bash % 2to3 printlinks.py

-—— printlinks.py (original)
+++ printlinks.py (refactored)
@@ -1,12 +1,12 @@

-import urllib

It identifies _+'+import urllib.request, urllib.parse, urllib.error

lines that import sys
must be -from HTMLParser import HTMLParser
changed > +from html.parser import HTMLParser

ass LinkPrinter (HTMLParser):
ef handle starttag(self,tag,attrs):

if tag == 'a':
for name,value in attrs:
- if name == 'href': print value
if name == 'href': print(value)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 6

Fixed Code

® Here's an example of a fixed code (after 2to3)

import urllib.request, urllib.parse, urllib.error
import sys
from html.parser import HTMLParser

class LinkPrinter (HTMLParser):
def handle starttag(self,tag,attrs):

if tag == 'a':
for name,value in attrs:
if name == 'href': print(value)

data = urllib.request.urlopen(sys.argv[l]).read()
LinkPrinter().feed(data)

® This is syntactically correct Python 3

® But, it still doesn't work. Do you see why?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 7

Broken Code

® Run it

bash % python3 printlinks.py http://www.python.org
Traceback (most recent call last):
File "printlinks.py", line 12, in <module>
LinkPrinter().feed(data)
File "/Users/beazley/Software/lib/python3.1/html/parser.py",
line 107, in feed

self.rawd .rawdata
TypeError: (Can't convert 'bytes' object to str oimplicitly
bash %

Ah ha! Look at that!

® That is an I/O handling problem

® |Important lesson :2to3 didn't find it

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 8

Actually Fixed Code

® This version works

import urllib.request, urllib.parse, urllib.error
import sys
from html.parser import HTMLParser

class LinkPrinter (HTMLParser):
def handle starttag(self,tag,attrs):

if tag == 'a':
for name,value in attrs:
if name == 'href': print(value)

data = urllib.request.urlopen(sys.argv[l]).read()
LinkPrinter().feed(data.decode('utf-8'))

/

| added this one tiny bit (by hand)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 9

Important Lessons

A lot of things change in Python 3
2to3 only fixes really "obvious" things
It does not, in general, fix I/O problems

Imagine applying it to a huge framework

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 20

Part 2

Working with Text

21

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Making Peace with Unicode

® |n Python 3, all text is Unicode
® All strings are Unicode

® All text-based I/O is Unicode

® You really can't ignore it or live in denial

22

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unicode For Mortals

| teach a lot of Python training classes

| rarely encounter programmers who have a
solid grasp on Unicode details (or who even
care all that much about it to begin with)

What follows : Essential details of Unicode
that all Python 3 programmers must know

You don't have to become a Unicode expert

23

Text Representation

® Old-school programmers know about ASCII

000 001 002 003 004 005 006 007

P‘P

0050 0o

o [Ivuit |fois | {s71| O

o000 o1 0020 0030

1 |fsonf focii | 1| 1

LA O
o)
20

A=
T

i 8

3+ 8

(W8]
W

[@]

wn

=]

4 | iEoTi | incal $

) o014 ooz

N
O QW > @

00!

=

04 074

® Each character has its own integer byte code

® Text strings are sequences of character codes

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

24

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unicode Characters

Unicode is the same idea only extended

It defines a standard integer code for every
character used in all languages (except for
fictional ones such as Klingon, Elvish, etc.)

The numeric value is known as a "code point”

Typically denoted U+HHHH in conversation

i = U+00F1
€ = U+03B5
© = U+0A87
= = U+3304

>

25

Unicode Charts

® A major problem :There are a lot of codes

Largest supported code point U+|0FFFF

® Code points are organized into charts

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

http://www.unicode.org/charts

Go there and you will find charts organized by
language or topic (e.g., greek, math, music, etc.)

26

Unicode Charts

800 Code Charts - Scripts
EE : [mhttp:Nwww.unicode.org.n’charts! Q- 3
Code Charts Look up by character code: [| Site Map | Search ||

The Unicode Character Code Charts By Script

updated for Unicode 5.1
SYMBOLS AND PUNCTUATION | NAME INDEX | HELP AND LINKS

European Alphabets African Scripts Indic Scripts East Aslan Scripts 325';?! e
(see also Comb. . .
Marks) Ethiopic Bengali Han Ildeographs Kharoshthi
Armenian Ethiopic Devanagari éﬂs)d CJK Ideographs Mongalian

) Ethiopic . CJK Ideographs Ext. A g}
Armenian Supplement Gujarati (2MB) Phags-Pa
Armenian Ligatures |Ethiopic Extended | Gurmukhi ngriqlg)eographs Ext.B Tibetan

Other African

Coptic scripts Kannada Anclent Scripts
Coptic N'Ko Lepcha Ezr:gg;b#g 5MB) Ancient Greek

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unicode String Literals

® Strings can now contain any unicode character

® Example:

t = "That's a spicy jalapeno!"

t

® Problem : How do you indicate such characters?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Using a Unicode Editor

® [f you are using a Unicode-aware editor, you can
type the characters in source code (save as UTF-8)

t = "That's a spicy Jalapefio!"

® Example : "Character & Keyboard" viewer (Mac)

Characters
View :[Code Tables .
{“Unicode Other Encodings Favorites |
Unicode | Title Category
UUUUUUUY | BasiC L Car
00000080 Latin-1 Supplement Latin 0
00000100 | Latin Extended-A Latin v
00000180 | Latin Extended-B Latin
6o 1 2 3 4 5 6 171 8 9 A B C D E F
x 7 A ~ s O \ S a a8 11 5570
“0d ddadaaxg¢ceeeell I
~ ~ s oA o~ o, ~ soA e s .
o 9 A O0OO6000 o UUOUY DY
wm A 3 K X A~ 2 F 207707 XRA
Character Info
Font Variation
J Q [
Copyright (C) 2010, David Beazley, http://www.dabeaz.com 29

Using Unicode Charts

® [f you can't type it, use a code-point escape

0080 C1 Controls and Latin-1 Supplement 00FF

008 0089 O00A OQ0OB OO0OC O0OD OOE OOF
S S p— ~
{ i |'npgt |[INBi| © b

0 | PX% 1 iPC5 |{se ADla|o
OCED 00an i) DIBD oaca DIDO 0IED DOFL
R R < . # —~

plpxxi e £ AN A D
-3-3;'- -:51- st e C1 000 HE1 F1

t = "That's a spicy Jalape\u00flo!"

® \uxxxx - Embeds a Unicode code point in a string

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 30

Unicode Escapes

® There are three Unicode escapes
® \xhh : Code points U+00 - U+FF
® \uhhhh :Code points U+0100 - U+FFFF
® \Uhhhhhhhh : Code points > U+10000

® Examples:
a —_ ll\Xflll # a — lﬁl
b = "\u2l0f" #b = 'h'
c = "\u0001d1i22" # c = "9

31

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Using Unicode Charts

® Code points also have descriptive names

00F1 fi LATINSMALL LETTER N WITH TILDE

=(006E n 0303 &
00F2 O LATINSMALL LETTER O WITH GRAVE

= (006F o 0300 &
00F3 6 LATINSMALL LETTER O WITH ACUTE

= (006F o 0301 &

® \N{name} - Embeds a named character

t = "Spicy Jalape\N{LATIN SMALL LETTER N WITH TILDE}o!"

32

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

® Don't overthink Unicode

® Unicode strings are mostly like ASCII strings
except that there is a greater range of codes

® Everything that you normally do with strings
(stripping, finding, splitting, etc.) still work, but
are expanded

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

33

A Caution

® Unicode is mostly like ASCIl except when it's not

>>> g
>>> t
>>> g
'Jalapefio’

>>> t

'Jalapefio’

>>> g ==t

False

>>> len(s), len(t)
(8, 9)

>>>

"Jalape\xflo"
"Jalapen\u03030"

'n' = 'n'"+'"'" (combining 7)

® Many tricky bits if you get into internationalization

® However, that's a different tutorial

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

34

Unicode Representation

® Internally, Unicode character codes are
stored as multibyte integers (16 or 32 bits)

t = "Jalapefo"

004a 0061 006c 0061 0070 0065 00f1 0O06f (UCsS-2,16-bits)
0000004a 0000006a 0000006c 00000070 ... (UCS-4,32-bits)

® You can find out using the sys module

>>> sys.maxunicode
65535 # 1l6-bits

>>> sys.maxunicode
1114111 # 32-bits

® In C, it means a 'short' or 'int' is used

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 35

Memory Use

® Yes, text strings in Python 3 require either 2x
or 4x as much memory to store as Python 2

® For example: Read a |I0MB ASCII text file

data = open("bigfile.txt").read()

>>> sys.getsizeof (data) # Python 2.6
10485784

>>> sys.getsizeof (data) # Python 3.1 (UCS-2)
20971578

>>> sys.getsizeof (data) # Python 3.1 (UCS-4)
41943100

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 36

Performance Impact

® Increased memory use does impact the
performance of string operations that make
copies of large substrings

® Slices, joins, split, replace, strip, etc.

® Example:
timeit("text[:-1]1","text='x"'*100000")

Python 2.6.4 (bytes) :115s
Python 3.1.1 (UCS-2) :24.1 s
Python 3.1.1 (UCS-4) :47.1 s

® There are more bytes moving around

37

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Performance Impact

® Operations that process strings character
often run at the same speed (or are faster)

® |ower, upper, find, regexs, etc.
® Example:

timeit("text.upper()","text="x"'*1000")

Python 2.6.4 (bytes) :9.3s
Python 3.1.1 (UCS-2) :6.9s
Python 3.1.1 (UCS-4) :7.0s

38

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

® Yes, text representation has an impact

® In your programs, you can work with text in
the same way as you always have (text
representation is just an internal detail)

® However, know that the performance may
vary from 8-bit text strings in Python 2

® Study it if working with huge amounts of text

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 39

Issue : Text Encoding

® The internal representation of characters is now
almost never the same as how text is transmitted
or stored in files

Text File Hello World

File content
(ASCII bytes)

48 65 6¢c 6¢c 6f 20 57 6f 72 6¢c 64 Oa

read() write()
Python String 00000048 00000065 0000006c 0000006c
Representation 0000006f 00000020 00000057 0000006

00000072 0000006c 00000064 0000000a

(UCS-4, 32-bit ints)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 40

Issue : Text Encoding

® There are also many possible file encodings
for text (especially for non-ASCII)

"Jalapeno"
latin- | 4a 61 6¢c 61 70 65 f1 6f
cp437 4a 61 6c 61 70 65 ad 6f
utf-8 4a 61 6¢c 61 70 65 c3 bl 6f
utf-16 ff fe 4a 00 61 00 6¢c 00 61 00

70 00 65 00 £1 00 6f 00

® Emphasize :They are only related to how
text is stored in files, not stored in memory

Copyright (C) 2010, David Beazley, htt,

41

/O Encoding

® All text is now encoded and decoded

® If reading text, it must be decoded from its
source format into Python strings

® [f writing text, it must be encoded into some
kind of well-known output format

® This is a major difference between Python 2
and Python 3. In Python 2, you could write
programs that just ignored encoding and
read text as bytes (ASCII).

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

42

Reading/Writing Text

® Built-in open() function has an optional
encoding parameter

f = open("somefile.txt","rt",encoding="latin-1")

® [f you omit the encoding, UTF-8 is assumed

>>> f = open("somefile.txt","rt")
>>> f.encoding

'UTF-8'

>>>

® Also, in case you're wondering, text file modes

should be specified as "rt","wt","at", etc.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 43

Standard |/O

® Standard I/O streams also have encoding

>>> import sys

>>> sys.stdin.encoding
'UTF-8'

>>> sys.stdout.encoding
'UTF-8'

>>>

® Be aware that the encoding might change
depending on the locale settings

>>> import sys

>>> sys.stdout.encoding
'US-ASCIT'

>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 44

Binary File Modes

® Writing text on binary-mode files is an error

>>> f = open("foo.bin","wb")
>>> f.write("Hello World\n")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: must be bytes or buffer, not str
>>>

® For binary I/O, Python 3 will never implicitly
encode unicode strings and write them

® You must either use a text-mode file or
explicitly encode (str.encode('encoding'))

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 45

Important Encodings

® |f you're not doing anything with Unicode
(e.g., just processing ASCII files), there are
still three encodings you should know

e ASCII
® |atin-|
o UTF-8

® Will briefly describe each one

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 46

ASCII Encoding

® Text that is restricted to 7-bit ASCII (0-127)

® Any characters outside of that range
produce an encoding error

>>> f = open("output.txt","wt",encoding="ascii")
>>> f.write("Hello World\n")

12

>>> f.write("Spicy Jalapefio\n")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode
character '\xfl' in position 12: ordinal not in
range(128)
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 47
® Text that is restricted to 8-bit bytes (0-255)
® Byte values are left "as-is"
>>> f = open("output.txt","wt",encoding="latin-1")
>>> f.write("Spicy Jalapefio\n")
15
>>>
® Most closely emulates Python 2 behavior
® Also known as "iso-8859-1" encoding
® Pro tip:This is the fastest encoding for pure
8-bit text (ASCII files, etc.)
Copyright (C) 2010, David Beazley, http://www.dabeaz.com 48

UTF-8 Encoding

® A multibyte encoding that can represent all
Unicode characters

Encoding Description

Onnnnnnn ASCII (0-127)
110nnnnn 10nnnnnn U+007F-U+07FF
1110nnnn 10nnnnnn 10nnnnnn U+0800-U+FFFF

11110nnn 10nnnnnn 10nnnnnn 10nnnnnn U+10000-U+10FFFF

® Example:

n = 0xfl = 11110001

NS

11000011 10110001 = 0xc3 Oxbl (UTF-8)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 49

UTF-8 Encoding

® Main feature of UTF-8 is that ASCII is
embedded within it

® |f you're never working with international
characters, UTF-8 will work transparently

® Usually a safe default to use when you're not
sure (e.g., passing Unicode strings to
operating system functions, interfacing with
foreign software, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 50

Interlude

® [f migrating from Python 2, keep in mind
® Python 3 strings use multibyte integers
® Python 3 always encodes/decodes |/O

® |f you don't say anything about encoding,
Python 3 assumes UTF-8

® Everything that you did before should work
just fine in Python 3 (probably)

51

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

New Printing

® |n Python 3, print() is used for text output

® Here is a mini porting guide

Python 2 Python 3

print x,y,z2 print(x,y,2)

print x,vy,z, print(x,y,z,end="' ')
print >>f,x,y,z print(x,y,z,file=f)

® However, print() has a few new tricks not
available in Python 2

52

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Printing Enhancements

® Picking a different item separator

>>> print(1,2,3,sep="':")

1:2:3

>>> print("Hello", "World",sep="")
HelloWorld

>>>

® Picking a different line ending

>>> print("What?",end="!2!\n")
What?!?!
>>>

® Relatively minor, but these features are often
requested (e.g., "how do | get rid of the space?")

53

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Discussion : New ldioms

® |n Python 2, you might have code like this

print ",".join([name,shares,price])

® Which of these is better in Python 3?
print(",".join([name,shares,price]))
- Or -

print(name, shares, price, sep=",")

® Overall, | think I like the second one (even
though it runs a little bit slower)

54

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New String Formatting

® Python 3 has completely revised formatting

® Here is old Python (%)

s = "%$10s %10d %10.2f" % (name, shares, price)

® Here is Python 3

s = "{0:10s} {1:10d} {2:10.2f}".format(name,shares,price)

® You might find the new formatting jarring

® |et's talk about it

55

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

First, Some History

® String formatting is one of the few features
of Python 2 that can't be customized

® Classes can define __str__ () and __repr__ ()
® However, they can't customize % processing

® Python 2.6/3.0 adds a __ format__ () special
method that addresses this in conjunction
with some new string formatting machinery

56

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

String Conversions

® Objects now have three string conversions

>>> x = 1/3

>>> x.__str__ ()
'0.333333333333"

>>> x.__repr__ ()
'0.3333333333333333"

>>> x.__format__ ("0.2f")

'0.33"

>>> x._ format__ ("20.2f")
' 0.33"'
>>>

® You will notice that __ format__ () takes a
code similar to those used by the % operator

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

57

format() function

® format(obj, fmt) calls _ format__

>>> x = 1/3
>>> format(x,"0.2f")

'0.33"

>>> format(x,"20.2f")
' 0.33"
>>>

® This is analogous to str() and repr()

>>> str(x)
'0.333333333333"

>>> repr(x)
'0.3333333333333333"
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

58

Format Codes (Builtins)

® For builtins, there are standard format codes

0ld Format New Format Description

"ed" "q" Decimal Integer
"Sf" £ Floating point

"%s" "s" String

"ge" "e" Scientific notation
"ex" "x" Hexadecimal

® Plus there are some brand new codes

o Octal
"b" Binary
"yt Percent

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

59

Format Examples

® Examples of simple formatting
>>> x = 42
>>> format(x,"x")
28"
>>> format(x,"b")
‘101010
>>> y = 2.71828
>>> format(y,"f")
'2.718280"
>>> format(y,"e")
'2.718280e+00"'
>>> format(y,"%")
'271.828000%"'

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

60

Format Modifiers

® Field width and precision modifiers

[width][.precision]code

® Examples:

>>> y = 2.71828

>>> format(y,"0.2f")
'2.72"

>>> format(y,"10.4f")
! 2.7183'

>>>

® This is exactly the same convention as with
the legacy % string formatting

6l

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Alignment Modifiers

® Alignment Modifiers

[<|>]|"1[width][.precision]code

< left align
> right align
~ center align

® Examples:

>>> y = 2.71828

>>> format(y, "<20.2f")
'2.72 '
>>> format(y,""20.2f")
' 2.72 '
>>> format(y,">20.2f")
' 2.72"
>>>

62

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Fill Character

® Fill Character

[£il1][<|>|"]1[width][.precision]code

® Examples:

>>> x = 42

>>> format(x,"08d")

'00000042"

>>> format(x,"032b")
'00000000000000000000000000101010"'
>>> format(x,"="324")

. 4)mm—mm——m———m—ee

>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 63

Thousands Separator

® Inserta’, before the precision specifier

[£fil1]1[<|>|"]1[width][,][.precision]code

® Examples:

>>> x = 123456789

>>> format(x,",d")
'123,456,789"

>>> format(x,"10,.2f")
'123,456,789.00"

>>>

® This is pretty new (see PEP 378)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 64

Discussion

® As you can see, there's a lot of flexibility in
the new format method (there are other
features not shown here)

® User-defined objects can also completely
customize their formatting if they implement
__format__ (self,fmt)

65

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

String .format() Method

® Strings have .format() method for formatting
multiple values at once (replacement for %)

>>> "{0:10s} {1:10d} {2:10.2f}".format('ACME',50,91.10)
'ACME 50 91.10"
>>>

® format() method looks for formatting
specifiers enclosed in { } and expands them

® Each {} is similar to a %fmt specifier with the
old string formatting

66

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Format Specifiers

® Each specifier has the form : {what:fmt}

® what. Indicates what is being formatted
(refers to one of the arguments supplied
to the format() method)

® fmt. A format code. The same as what is
supplied to the format() function

® Each {what:fmt} gets replaced by the result of
format(what,fmt)

67

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Formatting lllustrated

® Arguments specified by position {n:fmt}

"{0:10s} {2:10.2f}".format('ACME',50,91.10)

® Arguments specified by keyword {key:fmt}
"{name:10s} {price:10.2f}".format(name='ACME',price=91.10)

_/

® Arguments formatted in order {:fmt}

"{:10s} {:10d} {:10.2f}".format('ACME',50,91.10)

68

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Container Lookups

® You can index sequences and dictionaries

>>> stock = ('ACME',50,91.10)
>>> "{s[0]:10s} {s[2]:10.2f}".format (s=stock)
'ACME 91.10°'

>>> stock = {'name':'ACME', 'shares':50, 'price':91.10 }
>>> "{O[name]:10s} {O[price]:10.2f}".format (stock)

'ACME 91.10"

>>>

® Restriction :You can't put arbitrary expressions
in the [] lookup (has to be a number or simple
string identifier)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 69
® You can refer to instance attributes
class Stock(object):
def init (self,name,shares,price):
self.name = name
self.shares = shares
self.price = price
>>> s = Stock('ACME',50,91.10)
>>> "{0.name:10s} {0.price:10.2f}".format(s)
'ACME 91.10'
>>>
® Commentary : Nothing remotely like this with
the old string formatting operator
70

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Nested Format Expansion

® format() allows one level of nested lookups in
the format part of each {}

>>> s = ('ACME',50,91.10)

>>> "{0:{width}s} {2:{width}.2f}".format(*s,width=12)
'ACME 91.10"

>>>

® Probably best not to get too carried away in
the interest of code readability though

71

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Other Formatting Details

e {and } must be escaped if part of formatting
® Use {{for{

® Use '}} for '}

® Example:

>>> "The value is {{{0}}}".format (42)
'The value is {42}’
>>>

72

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Commentary

® The new string formatting is very powerful

® However, I'll freely admit that it still feels very
foreign to me (maybe it's due to my long
history with using printf-style formatting)

® Python 3 still has the % operator, but it may
go away some day (I honestly don't know).

® All things being equal, you probably want to
embrace the new formatting

73

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 3

Binary Data Handling and Bytes

74

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Bytes and Byte Arrays

® Python 3 has support for "byte-strings"
® Two new types : bytes and bytearray

® They are quite different than Python 2 strings

75

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Defining Bytes

® Here's how to define byte "strings"

b"ACME 50 91.10" # Byte string literal
bytes([1,2,3,4,51]) # From a list of integers
bytes(10) # An array of 10 zero-bytes
bytes("Jalapeho","utf-8") # Encoded from string

a
b
C
d
® Can also create from a string of hex digits

e = bytes.fromhex("48656c6c6f")

® All of these define an object of type "bytes"

>>> type(a)
<class 'bytes'>
>>>

® However, this new bytes object is an odd duck

76

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Bytes as Strings

® Bytes have standard "string" operations

>>> s = b"ACME 50 91.10"
>>> s.split()

[b'ACME', b'50', b'91.10"']
>>> s.lower ()

b'acme 50 91.10'

>>> §[5:7]

b'50"

® And bytes are immutable like strings

>>> s[0] = b'a’
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'bytes' object does not support item assignment

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 77

Bytes as Integers

® Unlike Python 2, bytes are arrays of integers

>>> s = b"ACME 50 91.10"
>>> s[0]

65

>>> s[1]

67

>>>

® Same for iteration

>>> for c in s: print(c,end=' ')
65 67 77 69 32 53 48 32 57 49 46 49 48
>>>

® Hmmmm. Curious.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 78

bytearray objects

® A bytearray is a mutable bytes object

>>> s = bytearray(b"ACME 50 91.10")
>>> s[:4] = b"PYTHON"

>>> g

bytearray(b"PYTHON 50 91.10")

>>> s[0] = 0x70 # Must assign integers
>>> §

bytearray(b'pYTHON 50 91.10")

>>>

® |t also gives you various list operations

>>> s.append(23)

>>> s.append (45)

>>> s.extend([1,2,3,4])

>>> s

bytearray(b'ACME 50 91.10\x17-\x01\x02\x03\x04")
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

79

An Observation

® bytes and bytearray are not really meant to
mimic Python 2 string objects

® They're closer to array.array('B',...) objects

>>> import array

>>> s = array.array('B',[10,20,30,40,50])

>>> s[1]

20

>>> s[1l] = 200

>>> s.append(100)

>>> s.extend([65,66,67])

>>> s

array('B', [l10, 200, 30, 40, 50, 100, 65, 66, 67])
>>>

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

80

Bytes and Strings

® Bytes are not meant for text processing

® In fact, if you try to use them for text, you will
run into weird problems

® Python 3 strictly separates text (unicode) and
bytes everywhere

® This is probably the most major difference
between Python 2 and 3.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

8l

Mixing Bytes and Strings

® Mixed operations fail miserably

>>> s = b"ACME 50 91.10"
>>> 'ACME' in s
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Type str doesn't support the buffer API
>>>

o Huh?!?? Buffer API?

o We'll cover that later...

Copyright (C) 2010, David Beazley, http://www.dabeaz.c

82

Printing Bytes

® Printing and text-based I/O operations do not
work in a useful way with bytes

>>> s = b"ACME 50 91.10"
>>> print(s)
b'ACME 50 91.10'

N
Notice the leading b' and trailing
quote in the output.

® There's no way to fix this. print() should only
be used for outputting text (unicode)

83

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Formatting Bytes

® Bytes do not support operations related to
formatted output (%, .format)

>>> s = b"%0.2f" % 3.14159
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for %: 'bytes' and
'float'
>>>

® So, just forget about using bytes for any kind of
useful text output, printing, etc.

® No, seriously.

84

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

® Why am | focusing on this "bytes as text" issue?

® If you are writing scripts that do simple ASCII
text processing, you might be inclined to use
bytes as a way to avoid the overhead of Unicode

® You might think that bytes are exactly the same
as the familiar Python 2 string object

® This is wrong. Bytes are not text. Using bytes as
text will lead to convoluted non-idiomatic code

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

85

How to Use Bytes

® To use the bytes objects, focus on problems
related to low-level /O handling (message
passing, distributed computing, etc.)

® | will show some examples that illustrate

® A complaint: documentation (online and
books) is extremely thin on explaining
practical uses of bytes and bytearray objects

® Hope to rectify that a little bit here

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

86

Example : Reassembly

® In Python 2, you may know that string
concatenation leads to bad performance

msg =
while True:
chunk = s.recv(BUFSIZE)
if not chunk:
break
msg += chunk

® Here's the common workaround (hacky)

chunks = []
while True:
chunk = s.recv(BUFSIZE)
if not chunk:
break
chunks.append (chunk)
msg = b"".join(chunks)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

87

Example : Reassembly

® Here's a new approach in Python 3

msg = bytearray()
while True:
chunk = s.recv(BUFSIZE)
if not chunk:
break
msg.extend (chunk)

® You treat the bytearray as a list and just
append/extend new data at the end as you go

® | like it. It's clean and intuitive.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

88

Example: Reassembly

® The performance is good too
® Concat 1024 32-byte chunks together (10000x)

Concatenation : 18.49s
Joining : 1.55s
Extending a bytearray : |.78s

® There are many parts of the Python standard
library that might benefit (e.g., BytelO objects,
WSGI, multiprocessing, pickle, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 89

Example: Record Packing

® Suppose you wanted to use the struct module
to incrementally pack a large binary message

objs = [...] # List of tuples to pack
msg = bytearray() # Empty message

First pack the number of objects
msg.extend(struct.pack("<I",len(objs)))

Incrementally pack each object
for x in objs:

msg.extend(struct.pack(fmt, *x))

Do something with the message
f.write(msg)

® | like this as well.

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 90

Comment :Writes

® The previous example is one way to avoid
making lots of small write operations

® Instead you collect data into one large message
that you output all at once.

® |mproves I/O performance and code is nice

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

91

Example : Calculations

® Run a byte array through an XOR-cipher

>>> s = b"Hello World"

>>> t = bytes(x"42 for x in s)
>>> ¢

b'bOFFE\n}EXFN'

>>> bytes(x"42 for x in t)
b'Hello World'

>>>

® Compute and append a LRC checksum to a msg

Compute the checksum and append at the end

chk = 0
for n in msg:
chk "= n

msg.append(chk)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

92

Commentary

® |'m excited about the new bytearray object

® Many potential uses in building low-level
infrastructure for networking, distributed
computing, messaging, embedded systems, etc.

® May make much of that code cleaner, faster, and
more memory efficient

® Still more features to come...

93

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 4

System Interfaces

94

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

System Interfaces

® Major parts of the Python library are related to
low-level systems programming, sysadmin, etc.

® Os, os.path, glob, subprocess, socket, etc.

® Unfortunately, there are some really sneaky
aspects of using these modules with Python 3

® |t concerns the Unicode/Bytes separation

Copyright (C) 2010, David Beazley, http://www.dabeaz.co 95

The Problem

® To carry out system operations, the Python
interpreter executes standard C system calls

® For example, POSIX calls on Unix
int fd = open(filename, O RDONLY);

® However, names used in system interfaces (e.g.,
filenames, program names, etc.) are specified as
byte strings (char *)

® Bytes also used for environment variables and
command line options

96

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Question

® How does Python 3 integrate strings (Unicode)
with byte-oriented system interfaces!?

® Examples:
® Filenames
® Command line arguments (sys.argv)
® Environment variables (os.environ)

® Note:You should care about this if you use
Python for various system tasks

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

97

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Name Encoding

® Standard practice is for Python 3 to UTF-8
encode all names passed to system calls

thhon . f = open("somefile.txt","wt")
<encode('utf—8')
Clsyscall : open("somefile.txt",0 WRONLY)

® This is usually a safe bet

® ASCIl is a subset and UTF-8 is an extension that
most operating systems support

98

Arguments & Environ

® Similarly, Python decodes arguments and
environment variables using UTF-8

Python 3:

bash % python foo.py argl arg2 ... — 3 sys.argv

decode('utf-8")
TERM=xterm-color
SHELL=/bin/bash
USER=beazley
PATH=/usr/bin:/bin:/usr/sbin:... —> oOs.environ
LANG=en_US.UTF-8 decode('utf-8')

HOME=/Users/beazley
LOGNAME=beazley

99

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Lurking Danger

® Be aware that some systems accept, but do not
strictly enforce UTF-8 encoding of names

® This is extremely subtle, but it means that names
used in system interfaces don't necessarily
match the encoding that Python 3 wants

® Will show a pathological example to illustrate

100

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : A Bad Filename

® Start Python 2.6 on Linux and create a file using
the open() function like this:

>>> f = open("jalape\xflo.txt",6"w")
>>> f.write("Bwahahahaha!\n")
>>> f.close()

® This creates a file with a single non-ASCII byte
(\xfl,'n") embedded in the filename

® The filename is not UTF-8, but it still "works"

® Question: What happens if you try to do
something with that file in Python 3?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : A Bad Filename

® Python 3 won't be able to open the file

>>> f = open("jalape\xflo.txt")
Traceback (most recent call last):

IOError: [Errno 2] No such file or directory: 'jalapeho.txt'
>>>

® This is caused by an encoding mismatch

"jalape\xflo.txt"

|uTF-8
b"jalape\xc3\xblo.txt"
lopen() It fails because this is
the actual filename

Fails! b"jalape\xflo.txt"

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Example : A Bad Filename

® Bad filenames cause weird behavior elsewhere
® Directory listings
® Filename globbing

® Example :What happens if a non UTF-8 name
shows up in a directory listing?

® |n early versions of Python 3, such names were
silently discarded (made invisible). Yikes!

103

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Names as Bytes

® You can specify filenames using byte strings
instead of strings as a workaround

>>> f = open(b"jalape\xflo.txt")

>>>
Notice bytes

>>> files = glob.glob(b"*.txt")
>>> files

[b'jalape\xflo.txt', b'spam.txt']
>>>

® This turns off the UTF-8 encoding and returns
all results as bytes

® Note: Not obvious and a little hacky
104

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Surrogate Encoding

® |n Python 3.1, non-decodable (bad) characters in
filenames and other system interfaces are

translated using "surrogate encoding" as
described in PEP 383.

® This is a Python-specific "trick" for getting
characters that don't decode as UTF-8 to pass
through system calls in a way where they still
work correctly

105

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Surrogate Encoding

® |dea : Any non-decodable bytes in the range

0x80-0xff are translated to Unicode characters
U+DC80-U+DCFF

® Example:
b"jalape\xflo.txt"

surrogate encoding
"jalape\udcflo.txt"

® Similarly, Unicode characters U+DC80-U+DCFF
are translated back into bytes 0x80-0xff when
presented to system interfaces

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 06

Surrogate Encoding

® You will see this used in various library functions
and it works for functions like open()

® Example:

>>> glob.glob("*.txt")
['jalapeludcflo.txt', 'spam.txt']

™~

>>> f = open("jalape\udcflo.txt")
>>>

notice the odd unicode character

® [f you ever see a \udcxx character, it means that
a non-decodable byte was passed in from a
system interface

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 07

Surrogate Encoding

® Question : Does this break part of Unicode!?
® Answer : Unsure

® This uses a range of Unicode dedicated for a
feature known as "surrogate pairs". A pair of
Unicode characters encoded like this

(U+D800-U+DBFF, U+DCOO0-U+DFFF)

® |n Unicode, you would never see a U+DCxx
character appearing all on its own

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 08

Caution : Printing

® Non-decodable bytes will break print()

>>> files = glob.glob("*.txt")
>>> files
['Jalapel\udcflo.txt', 'spam.txt']
>>> for name in files:
print (name)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'utf-8' codec can't encode character

'\udcfl' in position 6: surrogates not allowed
>>>

® Arg! If you're using Python for file manipulation
or system administration you need to be careful

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 09

Implementation

® Surrogate encoding is implemented as an error
handler for encode() and decode()

® Example:
>>> s = b"jalape\xflo.txt"
>>> t = s.decode('utf-8', 'surrogateescape’)
>>> t

'jalape\udcflo.txt'
>>> t.encode('utf-8', 'surrogateescape')

b'jalape\xflo.txt'
>>>

® [f you are porting code that deals with system
interfaces, you might need to do this

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I I 0

Commentary

® This handling of Unicode in system interfaces is
also of interest to C/C++ extensions

® What happens if a C/C++ function returns an
improperly encoded byte string?

® What happens in ctypes? Swig?

® Seems unexplored (too obscure? new?)

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Part 5

The io module

112

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

/O Implementation

® |/O in Python 2 is largely based on C I/O

® For example, the "file" object is just a thin layer
over a C "FILE *" object

® Python 3 changes this

® In fact, Python 3 has a complete ground-up
reimplementation of the whole I/O system

113

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The open() function

® For files, you still use open() as you did before

® However, the result of calling open() varies
depending on the file mode and buffering

® Carefully study the output of this:

>>> open("foo.txt","rt")
_—» <_io.TextIOWrapper name='foo.txt' encoding='UTF-8'>
>>> open("foo.txt","rb")
— < _io.BufferedReader name='foo.txt'>
>>> open("foo.txt","rb",buffering=0)
< io.FileIO name='foo.txt' mode='rb'>
>>>

Notice how
you're getting a
different kind of

result here ~—

14

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The io module

® The core of the I/O system is implemented in
the io library module

® |t consists of a collection of different I/O classes

FileIO
BufferedReader
BufferedWriter
BufferedRWPair
BufferedRandom
TextIOWrapper
BytesIO
StringIO

® Each class implements a different kind of I/O

® The classes get layered to add features
15

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Layering lllustrated

® Here's the result of opening a "text" file

open("foo.txt","rt")

TextlOWrapper
v
BufferedReader
v
FilelO

® Keep in mind: This is very different from Python 2
® |nspired by Java? (don't know, maybe)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I I 6

FilelO Objects

® An object representing raw unbuffered binary 1/O
® FilelO(name [, mode [, closefd])

name :Filename or integer fd
LI I I |

mode :File mode ('r,'W','a’, 'r+',etc.)
closefd :Flag that controls whether close() called

® Under the covers, a FilelO object is directly
layered on top of operating system functions
such as read(), write()

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I I 7

FilelO Usage

® FilelO replaces os module functions

® Example : Python 2 (os module)

fd = os.open("somefile",o0s.0 RDONLY)
data = os.read(£fd,4096)
os.lseek(fd,16384,0s.SEEK_SET)

® Example : Python 3 (FilelO object)

f = io.FileIO("somefile","r")
data = f.read(4096)
f.seek(16384,0s.SEEK_SET)

® |t's a low-level file with a file-like interface (nice)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I I 8

Direct System /O

® FilelO directly exposes the behavior of low-level
system calls on file descriptors

® This includes:
® Partial read/writes
® Returning system error codes
® Blocking/nonblocking I1/O handling

® System hackers want this

119

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Direct System /O

® File operations (read/write) execute a single
system call no matter what

data = f.read(8192) # Executes one read syscall
f.write(data) # Executes one write syscall

® This might mean partial data (you must check)

120

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

® FilelO is the most critical object in the /O stack
® Everything else depends on it

® Nothing quite like it in Python 2

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 2 |

BufferedlO Objects

® The following classes implement buffered 1/O

BufferedReader(f [, buffer size])
BufferedWriter(f [, buffer size [, max buffer size]])
BufferedRWPair(f read, f write

[, buffer size [, max buffer sizel])
BufferedRandom(f [, buffer size [, max buffer size]])

® Each of these classes is layered over a supplied
raw FilelO obiject (f)

f = io.FileIO("foo.txt") # Open the file (raw I/0)
g = io.BufferedReader(f) # Put buffering around it
f = io.BufferedReader(io.FileIO("foo.txt")) # Alternative

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 22

Buffered Operations

® Buffered readers implement these methods

f.peek([n]) # Return up to n bytes of data without
advancing the file pointer

f.read([n]) # Return n bytes of data as bytes

f.readl([n]) # Read up to n bytes using a single
read() system call

® Buffered writers implement these methods

f.write(bytes) # Write bytes
f.flush() # Flush output buffers

® Other ops (seek, tell, close, etc.) work as well

123

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

TextlOWrapper

® The object that implements text-based I/O

TextIOWrapper (buffered [, encoding [, errors
[, newline [, line bufferingl]]])

buffered - A buffered file object

encoding Text encoding (e.g., 'utf-8'")

errors Error handling policy (e.g. 'strict')
newline - "', '\n', '\r', '\r\n', or None

line buffering Flush output after each line (False)

® [t is layered on a buffered I/O stream

f io.FileIO("foo.txt") # Open the file (raw I/0)
io.BufferedReader (£f) # Put buffering around it

io.TextIOWrapper (g, "utf-8") # Text I/O wrapper

g
h

124

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

TextlOWrapper and codecs

® Python 2 used the codecs module for unicode

® TextlOWrapper It is a completely new object,
written almost entirely in C

® [t kills codecs.open() in performance

for line in open("biglog.txt",encoding="utf-8"): 38 gec
pass
f = codecs.open("biglog.txt",encoding="utf-8") 53.3 sec
for line in f£f:
pass

Note: both tests performed using Python-3.1.1

Copyright (C) 2010, David Beazley, http://www.dabeaz.co I 25

Putting it All Together

® As a user, you don't have to worry too much
about how the different parts of the /O system
are put together (all of the different classes)

® The built-in open() function constructs the
proper set of IO objects depending on the
supplied parameters

® Power users might use the io module directly
for more precise control over special cases

126

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

open() Revisited

® Here is the full prototype

open(name [, mode [, buffering [, encoding [, errors
[, newline [, closefd]]11111)

® The different parameters get passed to
underlying objects that get created

name
mode —— > FilelO
closefd

buffering ——> BufferedReader, BufferedWriter

encoding

errors —> Textl OWrapper
newline

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 27

open() Revisited

® The type of IO object returned depends on the
supplied mode and buffering parameters

mode buffering Result

any binary 0 FileIO

"rb" 1= 0 BufferedReader
"wb","ab" 1= 0 BufferedWriter
"rb+", "wb+", "ab+" 1= 0 BufferedRandom
any text I=0 TextIOWrapper

® Note: Certain combinations are illegal and will
produce an exception (e.g., unbuffered text)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 28

Unwinding the I/O Stack

® Sometimes you might need to unwind a file

open("foo.txt","rt")

TextlOWrapper
l.buffer

BufferedReader

l . raw

FilelO

® Scenario :You were given an open text-mode
file, but want to use it in binary mode

129

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

/O Performance

® Question : How does new |/O perform?
® Will compare:

® Python 2.6.4 built-in open()

® Python 3.1.1 built-in open()

® Note:This is not exactly a fair test--the Python 3
open() has to decode Unicode text

® However, it's realistic, because most programmers
use open() without thinking about it

130

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

/O Performance

® Read a 100 Mbyte text file all at once

data = open("big.txt").read()

Python 2.6.4 :0.16s Yes, you get

Python 3.1 (UCS-2,UTF-8) :0.95s overhead due to

Python 3.1 (UCS-4, UTF-8) :1.67s text decoding
® Read a 100 Mbyte binary file all at once

data = open("big.bin","rb").read()

Python 2.6.4 :0.16s (I couldn't observe an

Python 3.1 (UCS-2,UTF-8) :0.16s oticeable difference)y

Python 3.1 (UCS-4,UTF-8) :0.16s

® Note: tests conducted with warm disk cache

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

131

/O Performance

® Write a 100 Mbyte text file all at once

open("foo.txt","wt").write(text)

Python 2.6.4 :2.30s
Python 3.1 (UCS-2,UTF-8) :2.47s
Python 3.1 (UCS-4, UTF-8) :2.55s

® Write a 100 Mbyte binary file all at once
data = open("big.bin","wb").write(data)

Python 2.6.4 :2.16s (I couldn't observe an
Python 3.1 (UCS-2,UTF-8) :2.16s noticeable difference)y
Python 3.1 (UCS-4,UTF-8) :2.16s

® Note: tests conducted with warm disk cache

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

132

/O Performance

® [terate over 730000 lines of a big log file (text)

for line in open("biglog.txt"):
pass

Python 2.6.4 :0.24s

Python 3.1 (UCS-2, UTF-8) :0.57s

Python 3.1 (UCS-4, UTF-8) :0.82s

® |terate over 730000 lines of a log file (binary)

for line in open('"biglog.txt","rb"):
pass

Python 2.6.4 :0.24s

Python 3.1 (UCS-2, UTF-8) :0.29s

Python 3.1 (UCS-4, UTF-8) :0.29s

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

133

/O Performance

® Write 730000 lines log data (text)

open("biglog.txt","wt").writelines(lines)

Python 2.6.4 1 3s Note: higher variance in

Python 3.1 (UCS-2, UTF-8) : |.4s observed times. These
Python 3.1 (UCS-4, UTF-8) : |.4s P g

(rough ballpark)
® Write 730000 lines of log data (binary)

for line in open("biglog.txt","wb"):
pass

Python 2.6.4 :1.3s

Python 3.1 (UCS-2, UTF-8) : 1.3s

Python 3.1 (UCS-4, UTF-8) : 1.3s

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

134

Commentary

® For binary, the Python 3 I/O system is
comparable to Python 2 in performance

® Text based I/O has an unavoidable penalty
® Extra decoding (UTF-8)
® An extra memory copy

® You might be able to minimize the decoding
penalty by specifying 'latin-1" (fastest)

® The memory copy can't be eliminated

135

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Commentary

® Reading/writing always involves bytes
"Hello World" -> 48 65 6c 6c 6f 20 57 6f 72 6¢c 64
® To get it to Unicode, it has to be copied to
multibyte integers (no workaround)
48 65 6¢c 6¢c 6f 20 57 6f 72 6¢c 64
Unicode conversion
0048 0065 006c 006c 006f 0020 0057 006f 0072 006c 0064

® The only way to avoid this is to never convert
bytes into a text string (not always practical)

136

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Advice

® Heed the advice of the optimization gods---ask
yourself if it's really worth worrying about
(premature optimization as the root of all evil)

® No seriously... does it matter for your app?

® If you are processing huge (no, gigantic) amounts
of 8-bit text (ASCII, Latin-1, UTF-8, etc.) and I/O
has been determined to be the bottleneck, there
is one approach to optimization that might work

137

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Text Optimization

® Perform all I/O in binary/bytes and defer
Unicode conversion to the last moment

® |f you're filtering or discarding huge parts of the
text, you might get a big win

® Example : Log file parsing

138

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Example

® Find all URLs that 404 in an Apache log

140.180.132.213 - - [...] "GET /ply/ply.html HTTP/1.1" 200 97238
140.180.132.213 - - [...] "GET /favicon.ico HTTP/1.1" 404 133

® Processing everything as text

error_404_ urls = set()
for line in open("biglog.txt"):
fields = line.split()
if fields[-2] == '404':
error 404 urls.add(fields[-4])

for name in error 404 urls:
print (name)

Python 2.6.4 1215
Python 3.1 (UCS-2) :2.12s
Python 3.1 (UCS-4) :2.56s

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 139

Example Optimization

® Deferred text conversion

error_404_urls = set()
for line in open("biglog.txt","rb"):
fields = line.split()
if fields[-2] == b'404"':
error 404 urls.add(fields[-4])

for name in error 404 urls:
print (name.decode('latin-1"))

\

Python 2.6.4 :1.21s
Python 3.1 (UCS-2) :1.21s
Python 3.1 (UCS-4) :1.26s

Unicode conversion here

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 40

Part 6

Standard Library Issues

141

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Text, Bytes, and the Library

® |n Python 2, you could be sloppy about the
distinction between text and bytes in many
library functions

® Networking modules
® Data handling modules
® Various sorts of conversions

® |n Python 3, you must be very precise

142

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Example : Socket Sends

® Here's a skeleton of some sloppy Python 2 code

def send_response(s,code,msqg):
s.sendall ("HTTP/1.0 %s %s\r\n" % (code,msqg))

send response(s,"200","OK")

® This is almost guaranteed to break

® Reason :Almost every library function that
communicates with the outside world (sockets,
urllib, SocketServer, etc.) now uses binary I/O

® So, text operations are going to fail

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 43

Example : Socket Sends

® In Python 3, you must explicitly encode text
def send_response(s,code,msqg):
resp = "HTTP/1.0 {:s} {:s}\r\n".format(code,msqg)
s.sendall (resp.encode('ascii'))
send response(s,"200","OK")
® Commentary :You really should have been doing
this in Python 2 all along

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 44

Rules of Thumb

® All incoming text data must be decoded

rawmsg = s.recv(16384) # Read from a socket
msg = rawmsg.decode('utf-8') # Decode

® All outgoing text data must be encoded

rawmsg = msg.encode('ascii')
s.send(rawmsg)

® Code most affected : anything that's directly

working with low-level network protocols
(HTTP, SMTP, FTP, etc.)

145

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Tricky Text Conversions

® Certain "text" conversions in the library do not
produce unicode text strings

® Base 64, quopri, binascii

® Example:

>>> a = b"Hello"
>>> print(binascii.b2a_hex(a))
_—>»b'48656c6chf’
*>>> print (base64.b64encode(a))
b'SGVsbG8="
>>>

bytes

® Need to be careful if using these to embed data
in text file formats (e.g., XML, JSON, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

146

Commentary

® When updating the Python Essential Reference
to cover Python 3 features, byte/string issues in
the standard library were one of the most
frequently encountered problems

® Documentation not updated to correctly to
indicate the requirement of bytes

® Various bugs in network/internet related code
due to byte/string separation

147

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Part /7

Memory Views and I/O

148

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Memory Buffers

® Many objects in Python consist of contiguously
allocated memory regions

® Byte strings and byte arrays

® Arrays (created by array module)
® ctypes arrays/structures

® Numpy arrays (not py3k yet)

® These objects have a special relationship with
the 1/O system

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 49

Direct /O with Buffers

® Obijects consisting of contiguous memory
regions can be used with |/O operations without
making extra buffer copies

read()

| write()

> bytes i

® reads and writes can be made to work directly
with the underlying memory buffer

150

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Direct Writing

® write() and send() operations already know
about array-like objects

>>> f

open("data.bin", "wb") # File in binary mode

>>> s = bytearray(b"Hello World\n") # Write a byte array
>>> f.write(s)
12

>>> import array
>>> a = array.array("i",[0,1,2,3,4,5])
>>> f.write(a) # Write an int array

R

Notice :An array of integers was written
without any intermediate conversion

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 5 |

Direct Reading

® You can read into an existing buffer/array using
readinto() (and other *_into() variants)

>>> f = open("data.bin","rb") # File in binary mode

>>> s = bytearray(12) # Preallocate an array
>>> s
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00")
>>> f.readinto(s) # Read into it

12

>>> s

bytearray(b'Hello World\n')

>>>

® readinto() fills the supplied buffer and returns
the actual number of bytes read

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 52

Direct Reading

® Direct reading works with other arrays too

>>> a = array.array('i',[0])*10
>>> a
array('i', (o, o, o, 0, 0, 0, 0, 0, 0, 0])

>>> f.readinto(a)

24

>>> a

array('i', [0, 1, 2, 3, 4, 5, 0, 0, O, 0])
>>>

® This is a feature that's meant to integrate well
with extensions such as ctypes, numpy, etc.

153

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Direct Packing/Unpacking

® Direct access to memory buffers shows up in
other library modules as well

® For example: struct

struct.pack_into(fmt, buffer, offset, ...)
struct.unpack from(fmt, buffer, offset)

® Example use:

>>> a = bytearray(10)

>>> a
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00")
>>> struct.pack_into("HH",a,4,0xaaaa,0xbbbb)

>>> a
bytearray(b'\x00\x00\x00\x00\xaa\xaa\xbb\xbb\x00\x00")
>>>

Notice in-place packing of values
154

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Record Packing Revisited

® An example of in-place record packing

objs

[...] # List of tuples to pack
fmt '

Format code

recsize = struct.calcsize(fmt)
msg = bytearray(4+len(objs)*recsize)

First pack the number of objects
struct.pack_into("I",msg,0,len(objs))

Incrementally pack each object
for n,x in enumerate(objs):
struct.pack_into(fmt,msg,4+n*recsize, *x)

Do something with the message

f.write(msg)

155

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

memoryview Objects

® Direct I/O, in-place packing, and other features
are tied to the buffer APl (C) and memoryviews

>>> a = b"Hello World"
>>> v = memoryview(a)
>>> v

<memory at 0x45b210>
>>>

® A memory view directly exposes data as a buffer
of bytes that can be used in low-level operations

156

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

How Views Work

® A memory view is a memory overlay

>>> a = bytearray(10)
>>> a

bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00")
>>> v = memoryview(a)
>>>

® |f you read or modify the view, you're working
with the same memory as the original object

>>> v[0] =
>>> v[-5:]
>>> a

bytearray(b'A\x00\x00\x00\x00World")
>>>

b'A’
= b'World'

In-place modifications

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 57

How Views Work

® Memory views do not violate mutability

>>> s b"Hello World"

>>> v = memoryview(s)

>>> v[0] = b'X’

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot modify read-only memory
>>>

® That's good!

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 58

How Views Work

® Memory views make zero-copy slices

>>> a = bytearray(10)

>>> a
bytearray(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00")
>>> v = memoryview(a)

>>> left = v[:5] # Make slices of the view
>>> right = v[5:]

>>> left[:] = b"Hello" # Reassign view slices
>>> right[:] = b"World"

>>> a # Look at original object

bytearray(b'HelloWorld"')
>>>

® This differs from how slices usually work

® Normally, slices make data copies

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 59

Practical Use of Views

® memoryviews are not something that casual
Python programmers should be using

® | would hate to maintain someone's code that
was filled with tons of memoryview hacks

® However, memoryviews have great potential for
programmers building libraries, frameworks, and
low-level infrastructure (e.g., distributed
computing, message passing, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com I 60

Practical Uses of Views

® Examples:
® Incremental I/O processing
® Message encoding/decoding
® Integration with foreign software (C/C++)

® Big picture : It can be used to streamline the
connections between different components by
reducing memory copies

161

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Incremental Writing

® Create a massive bytearray (256MB)

>>> a = bytearray(range(256))*1000000
>>> len(a)

256000000

>>>

® Challenge : Blast the array through a socket

® Problem : If you know about sockets, you know
that a single send() operation won't send 256MB.

® You've got to break it down into smaller sends

162

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Incremental Writing

® Here's an example of incremental transmission
with memoryview slices

view = memoryview(a)
while view:
nbytes = s.send(view)
view = view[nbytes:] # This is a zero-copy slice

® This sweeps over the bytearray, sending it in
chunks, but never makes a memory copy

163

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Incremental Reading

® Suppose you wanted to incrementally read data
into an existing byte array until it's filled

a = bytearray(size)

view = memoryview(a)

while view:
nbytes = s.recv_into(view)
view = view[nbytes:]

® |f you know how much data is being received in
advance, you can preallocate the array and
incrementally fill it (again, no copies)

164

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Commentary

® Again, direct manipulation of memoryviews is
something you probably want to avoid

® However, be on the lookout for functions such
as read_into(), pack_into(), recv_into(), etc. in
the standard library

® These make use of views and can offer I/O
efficiency gains for programmers who know how
to use them effectively

165

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Part 8

Porting to Python 3
(and final words)

166

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Big Picture

® |/O handling in Python 3 is so much more than
minor changes to Python syntax

® |t's a top-to-bottom redesign of the entire I/O
stack that has new idioms and new features

® Question : If you're porting from Python 2, do
you want to stick with Python 2 idioms or do
you take full advantage of Python 3 features!?

167

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Python 2 Backport

® Almost everything discussed in this tutorial has
been back-ported to Python 2

® So, you can actually use most of the core
Python 3 1/O idioms in your Python 2 code now

® Caveat :try to use the most recent version of
Python 2 possible (e.g., Python 2.7)

® There is active development and bug fixes

168

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

Porting Tips

® Make sure you very clearly separate bytes and
unicode in your application

® Use the byte literal syntax : b'bytes'
® Use bytearray() for binary data handling

® Use new text formatting idioms (.format, etc.)

Copyright (C) 2010, David Beazley, http://www.dabeaz.co

169

Porting Tips

® When you're ready for it, switch to the new
open() and print() functions

from _ future import print_ function
from io import open

® This switches to the new IO stack

® If you application still works correctly, you're
well on your way to Python 3 compatibility

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

170

Porting Tips

® Tests, tests, tests, tests, tests, tests...

® Don't even remotely consider the idea of
Python 2 to Python 3 port without unit tests

® |/O handling is only part of the process

® You want tests for other issues (changed
semantics of builtins, etc.)

171

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Modernizing Python 2

® Even if Python 3 is not yet an option for other
reasons, you can take advantage of its I/O
handling idioms now

® | think there's a lot of neat new things

® Can benefit Python 2 programs in terms of
more elegant programming, improved efficiency

172

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

That's All Folks!

® Hope you learned at least one new thing

® Please feel free to contact me

http://www.dabeaz.com

® Also, | teach Python classes (shameless plug)

173

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

