
Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Embracing the Global
Interpreter Lock (GIL)

1

David Beazley
http://www.dabeaz.com

October 6, 2011
PyCodeConf 2011, Miami

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Let's Love the GIL!

• After blowing up the GIL
at PyCon'2010, I thought it
needed a little more love

2

• Hence this talk!

• Let's begin

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

That is All

• Thanks for listening!

• Hope you learned something new

• Follow me! (@dabeaz)

• P.S. Use multiprocessing, futures

3

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Embracing that the GIL
Could be Better

4

David Beazley
http://www.dabeaz.com

October 6, 2011
PyCodeConf 2011, Miami

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

No, Seriously

• Let's talk about the GIL

• Apparently, it's an issue for some people

• Always comes up in discussions about
Python's future whether warranted or not

• Godwin's law of Python?

5

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

My Interest

• Why am I so fixated on the GIL?

6

• Short answer: It's a fun hard systems problem

• Breaking GILs is my hobby

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Premise

• Yes, yes, lots of people love to hate on threads

• That's only because they're being used!

• Threads make all sorts of great stuff work

• Even if you don't see them directly

7

Threads are useful

Copyright (C) 2011, David Beazley, http://www.dabeaz.com 8

Solution: Threads

Copyright (C) 2011, David Beazley, http://www.dabeaz.com 9

Solution: Threads

P.S. Come visit me in Chicago

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

The GIL in a Nutshell
• Python code is compiled into VM instructions

10

def countdown(n):
 while n > 0:
 print n
 n -= 1

>>> import dis
>>> dis.dis(countdown)
0 SETUP_LOOP 33 (to 36)
3 LOAD_FAST 0 (n)
6 LOAD_CONST 1 (0)
9 COMPARE_OP 4 (>)
12 JUMP_IF_FALSE 19 (to 34)
15 POP_TOP
16 LOAD_FAST 0 (n)
19 PRINT_ITEM
20 PRINT_NEWLINE
21 LOAD_FAST 0 (n)
24 LOAD_CONST 2 (1)
27 INPLACE_SUBTRACT
28 STORE_FAST 0 (n)
31 JUMP_ABSOLUTE 3
...

• In CPython, it is
unsafe to execute
instructions
concurrently

• Hence: Locking

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

The GIL in a Nutshell

• Things that the GIL protects

• Reference count updates

• Mutable types (lists, dicts, sets, etc.)

• Some internal bookkeeping

• Thread safety of C extensions

• Keep in mind: It's all low-level (C)

11

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Major GIL Issues

• Threads using multiple CPUs (for computation)

• Uninterruptible instructions

• Bad behavior of CPU-bound threads

12

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

The Challenge

• The GIL is unlikely to go away anytime soon

• However, can it be improved?

• Yes!

• Must embrace the idea that it's possible

• ... and agree that it's worthy goal

• There's been some progress in Python 3

13

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

14

• A request/reply server for size-prefixed messages

ServerClient

• Each message: a size header + payload

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

15

• Why this experiment?

• Messaging comes up in a lot of contexts

• Involves I/O

• Foundation of various techniques for working
around the GIL (cooperating processes + IPC)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

16

• A simple test - message echo (pseudocode)

def client(nummsg,msg):
 while nummsg > 0:
 send(msg)
 resp = recv()
 sleep(0.001)
 nummsg -= 1

def server():
 while True:
 msg = recv()
 send(msg)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

17

• A simple test - message echo (pseudocode)

def client(nummsg,msg):
 while nummsg > 0:
 send(msg)
 resp = recv()
 sleep(0.001)
 nummsg -= 1

def server():
 while True:
 msg = recv()
 send(msg)

• To be less evil, it's throttled (<1000 msg/sec)

• Hardly a messaging stress test

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

18

• Five server implementations

• C with ZeroMQ (no Python)

• Python with ZeroMQ (C extension)

• Python with multiprocessing

• Python with blocking sockets

• Python with nonblocking sockets, coroutines

• Reminder: Not a messaging stress test

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

19

• Hardware setup

• 8-CPU Amazon EC2 (c1.xlarge) instance

• Linux

• 64 bit

• 7 GB RAM

• High I/O performance

• In other words, not my laptop

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

20

• The test

• Send/receive 10000 8K messages (echo)

• 1ms delay after each message

• Emphasis: Not a messaging stress test

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

21

• Scenario 1 : Unloaded server

ServerClient

Time to send/receive 10000 8k messages (Py3.2)

• Question: What do you expect?

• 10000 messages w/ 1ms delay = ~10sec

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

22

• Scenario 1 : Unloaded server

ServerClient

Time to send/receive 10000 8k messages (Py3.2)

C + ZeroMQ
Python + ZeroMQ
Python + multiprocessing
Python + blocking sockets
Python + nonblocking sockets

12.8s
13.0s
11.6s
11.8s
12.2s

• Runs at about 10-20% CPU load

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

23

• Scenario 2 : Server competes with one CPU-thread

ServerClient

CPU-Thread

• Imagine it's computing something very important

• Like the 200th Fibonacci number via recursion

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

An Experiment: Messaging

24

• Scenario 2 : Server competes with one CPU-thread

ServerClient

CPU-Thread

Time to send/receive 10000 8k messages (Py3.2)

C + ZeroMQ
Python + ZeroMQ
Python + multiprocessing
Python-Blocking
Python-Nonblocking

 12.6s (same)
 91.6s (7.0x slower)
103.3s (8.9x slower)
142.7s (12.1x slower)
126.2s (10.3x slower)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Commentary

25

• This aggression will not stand.

• Surely it can be better

• We're not talking about micro-optimization

• Reminder: Not a messaging stress test

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Thought: Try PyPy

26

• Scenario 2 : Server competes with one CPU-thread

ServerClient

CPU-Thread

Time to send/receive 10000 8k messages (pypy-1.6)

.... wait for it (drumroll)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Thought: Try PyPy

27

• Scenario 2 : Server competes with one CPU-thread

ServerClient

CPU-Thread

Time to send/receive 10000 8k messages (pypy-1.6)

Python-Blocking
Python-Nonblocking

 6689.2s (567x slower)
 4975.0s (408x slower)

• To be fair--there was a bug (already fixed)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Thought : Try Python2.7

28

• Scenario 2 : Server competes with one CPU-thread

ServerClient

CPU-Thread

Time to send/receive 10000 8k messages (Py2.7)

C + ZeroMQ
Python + ZeroMQ
Python + multiprocessing
Python-Blocking
Python-Nonblocking

 12.6s (same)
 27.7s (2.1x slower)
 15.0s (1.3x slower)
 15.6s (1.3x slower)
 18.1s (1.5x slower)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Try This At Home

29

badidle.py

import threading
def spin():
 while True:
 pass

t = threading.Thread(target=spin)
t.daemon=True
t.start()

import idlelib.idle

• Not just networks : Try this GUI experiment

• GUI is completely unusable!

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Thread Switching

30

• The performance problems are related to the
mechanism used to switch threads

• In particular, the preemption mechanism and
lack of thread priorities

• Py3.2 GIL severely penalizes response-time

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

GIL Acquisition Sequence
• GIL acquisition based on timeouts

31

Thread 1

Thread 2 READY

running

wait(gil, TIMEOUT)

release

running
IOWAIT

data
arrives

wait(gil, TIMEOUT)

5ms

drop_request

• Any thread that wants the GIL must wait 5ms

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Problem : GIL Release
• CPU-bound threads significantly degrade I/O

32

Thread 1

Thread 2 READY

running

run

data
arrives

• Each I/O call drops the GIL and might restart
the CPU bound thread

• If it happens, need 5ms to get the GIL back

data
arrives

running

READY
run

release

running

READY

data
arrives

5ms 5ms 5ms

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Performance Explained

33

• Go back to the server

def server():
 while True:
 msg = recv()
 send(msg)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Performance Explained

34

• What's really happening

def server():
 while True:
 <release GIL>
 msg = recv()
 <acquire GIL>
 <release GIL>
 send(msg)
 <acquire GIL>

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Performance Explained

35

• Actually, it's just a bit worse...

def server():
 while True:
 <release GIL>
 msgsize = recv(headersize)
 <acquire GIL>
 <release GIL>
 msgbody = recv(msgsize)
 <acquire GIL>
 <release GIL>
 send(msg)
 <acquire GIL>

(5ms)

(5ms)

(5ms)

• 10000 messages x15ms = 150s (worst case)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

Thread Priorities
• To fix, you need priorities

36

Thread 1

Thread 2

running

run

data
arrives

data
arrives

running

run

release

running

release(low priority)

(high priority)

• The original "New GIL" patch had priorities

• That should be revisited

Copyright (C) 2010, David Beazley, http://www.dabeaz.com 2-

An Experiment

37

• I have an experimental Python3.2 w/ priorities

• Extremely minimal

• Manual priority adjustment (sys.setpriority)

• Highest priority thread always runs

• Probably too minimal for real (just for research)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Example: Priorities

38

import sys
import threading

def cputhread():
 sys.setpriority(-1) # Lower my priority
 ...

t = threading.Thread(target=cputhread)
t.start()

• Setting a thread's priority

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Messaging + Priorities

39

• Scenario 2 : Server competes with one CPU-thread

ServerClient

CPU-Thread

Send/receive 10000 8k messages (Py3.2+priorities)

C + ZeroMQ
Python + ZeroMQ
Python + multiprocessing
Python-Blocking
Python-Nonblocking

 12.6s (same)
 17.6s (1.3x slower)
 14.2s (1.2x slower)
 13.0s (1.1x slower)
 14.0s (1.1x slower)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

GUI Revisited

40

badidle.py

import sys
import threading
def spin():
 sys.setpriority(-1)
 while True:
 pass

t = threading.Thread(target=spin)
t.daemon=True
t.start()
import idlelib.idle

• Try this variant with priorities

• GUI is completely usable (barely notice)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Some Thoughts

41

• A huge boost in performance with very few
modifications to Python (only a few files)

• Is this the only possible GIL improvement?

• Answer: No

• Example: Should the GIL be released on non-
blocking I/O operations? (think about it)

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Wrapping Up

42

• I think all Python programmers should be
interested in having a better GIL

• Improving it doesn't necessarily mean huge
patches to the Python core

• You (probably) don't have to write an OS

• Incremental improvements can be made

Copyright (C) 2011, David Beazley, http://www.dabeaz.com

Final Words

43

• Code and resources

http://www.dabeaz.com/talks/EmbraceGIL/

• Hope you enjoyed the talk!

• Follow me on Twitter (@dabeaz)

• All code available under version control

