
Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Python Generator
Hacking
David Beazley

http://www.dabeaz.com

Presented at USENIX Technical Conference
San Diego, June 2009

1

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Introduction

2

• At PyCon'2008 (Chicago), I gave a popular
tutorial on generator functions

• At PyCon'2009 (Chicago), I followed it up
with a tutorial on coroutines (a related topic)

• This tutorial is a kind of "mashup"

• Details from both, but not every last bit

http://www.dabeaz.com/generators

http://www.dabeaz.com/coroutines

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Goals

3

• Take a look at Python generator functions

• A feature of Python often overlooked, but
which has a large number of practical uses

• Especially for programmers who would be
likely to attend a USENIX conference

• So, my main goal is to take this facet of
Python, shed some light on it, and show how
it's rather "nifty."

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Support Files

4

• Files used in this tutorial are available here:

http://www.dabeaz.com/usenix2009/generators/

• Go there to follow along with the examples

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Disclaimer

5

• This isn't meant to be an exhaustive tutorial
on every possible use of generators and
related theory

• Will mostly go through a series of examples

• You'll have to consult Python documentation
for some of the more subtle details

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part I

6

Introduction to Iterators and Generators

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Iteration

• As you know, Python has a "for" statement

• You use it to iterate over a collection of items

7

>>> for x in [1,4,5,10]:

... print x,

...

1 4 5 10

>>>

• And, as you have probably noticed, you can
iterate over many different kinds of objects
(not just lists)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Iterating over a Dict

• If you iterate over a dictionary you get keys

8

>>> prices = { 'GOOG' : 490.10,

... 'AAPL' : 145.23,

... 'YHOO' : 21.71 }

...

>>> for key in prices:

... print key

...

YHOO

GOOG

AAPL

>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Iterating over a String

• If you iterate over a string, you get characters

9

>>> s = "Yow!"

>>> for c in s:

... print c

...

Y

o

w

!

>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Iterating over a File
• If you iterate over a file you get lines

10

>>> for line in open("real.txt"):

... print line,

...

 Real Programmers write in FORTRAN

 Maybe they do now,

 in this decadent era of

 Lite beer, hand calculators, and "user-friendly" software

 but back in the Good Old Days,

 when the term "software" sounded funny

 and Real Computers were made out of drums and vacuum tubes,

 Real Programmers wrote in machine code.

 Not FORTRAN. Not RATFOR. Not, even, assembly language.

 Machine Code.

 Raw, unadorned, inscrutable hexadecimal numbers.

 Directly.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Consuming Iterables

• Many functions consume an "iterable"

• Reductions:

11

sum(s), min(s), max(s)

• Constructors

list(s), tuple(s), set(s), dict(s)

• in operator

item in s

• Many others in the library

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Iteration Protocol

• The reason why you can iterate over different
objects is that there is a specific protocol

12

>>> items = [1, 4, 5]

>>> it = iter(items)

>>> it.next()

1

>>> it.next()

4

>>> it.next()

5

>>> it.next()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

StopIteration

>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Iteration Protocol
• An inside look at the for statement

for x in obj:

 # statements

• Underneath the covers
_iter = obj.__iter__() # Get iterator object

while 1:

 try:

 x = _iter.next() # Get next item

 except StopIteration: # No more items

 break

 # statements

 ...

• Any object that implements this programming
convention is said to be "iterable"

13

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Supporting Iteration

• User-defined objects can support iteration

• Example: a "countdown" object
>>> for x in countdown(10):

... print x,

...

10 9 8 7 6 5 4 3 2 1

>>>

14

• To do this, you just have to make the object
implement the iteration protocol

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Supporting Iteration

class countdown(object):

 def __init__(self,start):

 self.count = start

 def __iter__(self):

 return self

 def next(self):

 if self.count <= 0:

 raise StopIteration

 r = self.count

 self.count -= 1

 return r

15

• One implementation

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Iteration Example

• Example use:

>>> c = countdown(5)

>>> for i in c:

... print i,

...

5 4 3 2 1

>>>

16

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Supporting Iteration

class countdown(object):

 def __init__(self,start):

 self.count = start

 def __iter__(self):

 return countdown_iter(self.count)

def countdown_iter(object):

 def __init__(self,count):

 self.count = count

 def next(self):

 if self.count <= 0:

 raise StopIteration

 r = self.count

 self.count -= 1

 return r

17

• Sometimes iteration gets implemented using a
pair of objects (an "iterable" and an "iterator")

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Iteration Example
• Having a separate "iterator" allows for

nested iteration on the same object

>>> c = countdown(5)

>>> for i in c:

... for j in c:

... print i,j

...

5 5

5 4

5 3

5 2

...

1 3

1 2

1 1

>>>

18

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Iteration Commentary

• There are many subtle details involving the
design of iterators for various objects

• However, we're not going to cover that

• This isn't a tutorial on "iterators"

• We're talking about generators...

19

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generators

• A generator is a function that produces a
sequence of results instead of a single value

20

def countdown(n):

 while n > 0:

 yield n

 n -= 1

>>> for i in countdown(5):

... print i,

...

5 4 3 2 1

>>>

• Instead of returning a value, you generate a
series of values (using the yield statement)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generators

21

• Behavior is quite different than normal func

• Calling a generator function creates an
generator object. However, it does not start
running the function.

def countdown(n):

 print "Counting down from", n

 while n > 0:

 yield n

 n -= 1

>>> x = countdown(10)

>>> x

<generator object at 0x58490>

>>>

Notice that no
output was
produced

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generator Functions

• The function only executes on next()
>>> x = countdown(10)

>>> x

<generator object at 0x58490>

>>> x.next()

Counting down from 10

10

>>>

• yield produces a value, but suspends the function

• Function resumes on next call to next()
>>> x.next()

9

>>> x.next()

8

>>>

Function starts
executing here

22

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generator Functions

• When the generator returns, iteration stops

>>> x.next()

1

>>> x.next()

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

StopIteration

>>>

23

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generator Functions

• A generator function is mainly a more
convenient way of writing an iterator

• You don't have to worry about the iterator
protocol (.next, .__iter__, etc.)

• It just works

24

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generators vs. Iterators

• A generator function is slightly different
than an object that supports iteration

• A generator is a one-time operation. You
can iterate over the generated data once,
but if you want to do it again, you have to
call the generator function again.

• This is different than a list (which you can
iterate over as many times as you want)

25

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Digression : List Processing

• If you've used Python for awhile, you know that
it has a lot of list-processing features

• One feature, in particular, is quite useful

• List comprehensions

>>> a = [1,2,3,4]

>>> b = [2*x for x in a]

>>> b

[2, 4, 6, 8]

>>>

26

• Creates a new list by applying an operation to
all elements of another sequence

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

List Comprehensions

• A list comprehension can also filter

>>> f = open("stockreport","r")

>>> goog = [line for line in f if 'GOOG' in line]

>>>

>>> a = [1, -5, 4, 2, -2, 10]

>>> b = [2*x for x in a if x > 0]

>>> b

[2,8,4,20]

>>>

• Another example (grep)

27

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

List Comprehensions

• General syntax

[expression for x in s if condition]

• What it means
result = []

for x in s:

 if condition:

 result.append(expression)

• Can be used anywhere a sequence is expected
>>> a = [1,2,3,4]

>>> sum([x*x for x in a])

30

>>>

28

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

List Comp: Examples

• List comprehensions are hugely useful

• Collecting the values of a specific field

stocknames = [s['name'] for s in stocks]

• Performing database-like queries

a = [s for s in stocks if s['price'] > 100

 and s['shares'] > 50]

• Quick mathematics over sequences

cost = sum([s['shares']*s['price'] for s in stocks])

29

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generator Expressions
• A generated version of a list comprehension

>>> a = [1,2,3,4]

>>> b = (2*x for x in a)

>>> b

<generator object at 0x58760>

>>> for i in b: print b,

...

2 4 6 8

>>>

• This loops over a sequence of items and applies
an operation to each item

• However, results are produced one at a time
using a generator

30

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generator Expressions

• Important differences from a list comp.

• Does not construct a list.

• Only useful purpose is iteration

• Once consumed, can't be reused

31

• Example:
>>> a = [1,2,3,4]

>>> b = [2*x for x in a]

>>> b

[2, 4, 6, 8]

>>> c = (2*x for x in a)

<generator object at 0x58760>

>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generator Expressions

• General syntax

(expression for x in s if condition)

32

• What it means

 for x in s:

 if condition:

 yield expression

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Note on Syntax

• The parens on a generator expression can
dropped if used as a single function argument

• Example:

sum(x*x for x in s)

33

Generator expression

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude
• There are two basic blocks for generators

• Generator functions:

34

def countdown(n):

 while n > 0:

 yield n

 n -= 1

• Generator expressions

squares = (x*x for x in s)

• In both cases, you get an object that
generates values (which are typically
consumed in a for loop)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 2

35

Processing Data Files

(Show me your Web Server Logs)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Programming Problem

36

Find out how many bytes of data were
transferred by summing up the last column
of data in this Apache web server log

81.107.39.38 - ... "GET /ply/ HTTP/1.1" 200 7587

81.107.39.38 - ... "GET /favicon.ico HTTP/1.1" 404 133

81.107.39.38 - ... "GET /ply/bookplug.gif HTTP/1.1" 200 23903

81.107.39.38 - ... "GET /ply/ply.html HTTP/1.1" 200 97238

81.107.39.38 - ... "GET /ply/example.html HTTP/1.1" 200 2359

66.249.72.134 - ... "GET /index.html HTTP/1.1" 200 4447

Oh yeah, and the log file might be huge (Gbytes)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Log File

• Each line of the log looks like this:

37

bytestr = line.rsplit(None,1)[1]

81.107.39.38 - ... "GET /ply/ply.html HTTP/1.1" 200 97238

• The number of bytes is the last column

• It's either a number or a missing value (-)

81.107.39.38 - ... "GET /ply/ HTTP/1.1" 304 -

• Converting the value
if bytestr != '-':

 bytes = int(bytestr)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Non-Generator Soln

• Just do a simple for-loop

38

wwwlog = open("access-log")

total = 0

for line in wwwlog:

 bytestr = line.rsplit(None,1)[1]

 if bytestr != '-':

 total += int(bytestr)

print "Total", total

• We read line-by-line and just update a sum

• However, that's so 90s...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Generator Solution

• Let's solve it using generator expressions

39

wwwlog = open("access-log")

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

• Whoa! That's different!

• Less code

• A completely different programming style

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Generators as a Pipeline

• To understand the solution, think of it as a data
processing pipeline

40

wwwlog bytecolumn bytes sum()access-log total

• Each step is defined by iteration/generation

wwwlog = open("access-log")

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Being Declarative
• At each step of the pipeline, we declare an

operation that will be applied to the entire
input stream

41

wwwlog bytecolumn bytes sum()access-log total

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

This operation gets applied to
every line of the log file

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Being Declarative

• Instead of focusing on the problem at a
line-by-line level, you just break it down
into big operations that operate on the
whole file

• This is very much a "declarative" style

• The key : Think big...

42

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Iteration is the Glue

43

• The glue that holds the pipeline together is the
iteration that occurs in each step

wwwlog = open("access-log")

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

• The calculation is being driven by the last step

• The sum() function is consuming values being
pulled through the pipeline (via .next() calls)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance

• Surely, this generator approach has all
sorts of fancy-dancy magic that is slow.

• Let's check it out on a 1.3Gb log file...

44

% ls -l big-access-log

-rw-r--r-- beazley 1303238000 Feb 29 08:06 big-access-log

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance Contest

45

wwwlog = open("big-access-log")

total = 0

for line in wwwlog:

 bytestr = line.rsplit(None,1)[1]

 if bytestr != '-':

 total += int(bytestr)

print "Total", total

wwwlog = open("big-access-log")

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

27.20

25.96

Time

Time

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Commentary

• Not only was it not slow, it was 5% faster

• And it was less code

• And it was relatively easy to read

• And frankly, I like it a whole better...

46

"Back in the old days, we used AWK for this and
we liked it. Oh, yeah, and get off my lawn!"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance Contest

47

wwwlog = open("access-log")

bytecolumn = (line.rsplit(None,1)[1] for line in wwwlog)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

25.96

Time

% awk '{ total += $NF } END { print total }' big-access-log

37.33

TimeNote:extracting the last
column might not be
awk's strong point

 (it's often quite fast)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Food for Thought

• At no point in our generator solution did
we ever create large temporary lists

• Thus, not only is that solution faster, it can
be applied to enormous data files

• It's competitive with traditional tools

48

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

More Thoughts

• The generator solution was based on the
concept of pipelining data between
different components

• What if you had more advanced kinds of
components to work with?

• Perhaps you could perform different kinds
of processing by just plugging various
pipeline components together

49

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

This Sounds Familiar

• The Unix philosophy

• Have a collection of useful system utils

• Can hook these up to files or each other

• Perform complex tasks by piping data

50

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 3

51

Fun with Files and Directories

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Programming Problem

52

You have hundreds of web server logs scattered
across various directories. In additional, some of
the logs are compressed. Modify the last program
so that you can easily read all of these logs

foo/

 access-log-012007.gz

 access-log-022007.gz

 access-log-032007.gz

 ...

 access-log-012008

bar/

 access-log-092007.bz2

 ...

 access-log-022008

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

os.walk()

53

import os

for path, dirlist, filelist in os.walk(topdir):

 # path : Current directory

 # dirlist : List of subdirectories

 # filelist : List of files

 ...

• A very useful function for searching the
file system

• This utilizes generators to recursively walk
through the file system

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

find

54

import os

import fnmatch

def gen_find(filepat,top):

 for path, dirlist, filelist in os.walk(top):

 for name in fnmatch.filter(filelist,filepat):

 yield os.path.join(path,name)

• Generate all filenames in a directory tree
that match a given filename pattern

• Examples
pyfiles = gen_find("*.py","/")

logs = gen_find("access-log*","/usr/www/")

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance Contest

55

pyfiles = gen_find("*.py","/")

for name in pyfiles:

 print name

% find / -name '*.py'

559s

468s

Wall Clock Time

Wall Clock Time

Performed on a 750GB file system
containing about 140000 .py files

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A File Opener

56

import gzip, bz2

def gen_open(filenames):

 for name in filenames:

 if name.endswith(".gz"):

 yield gzip.open(name)

 elif name.endswith(".bz2"):

 yield bz2.BZ2File(name)

 else:

 yield open(name)

• Open a sequence of filenames

• This is interesting.... it takes a sequence of
filenames as input and yields a sequence of open
file objects (with decompression if needed)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

cat

57

def gen_cat(sources):

 for s in sources:

 for item in s:

 yield item

• Concatenate items from one or more
source into a single sequence of items

• Example:
lognames = gen_find("access-log*", "/usr/www")

logfiles = gen_open(lognames)

loglines = gen_cat(logfiles)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

grep

58

import re

def gen_grep(pat, lines):

 patc = re.compile(pat)

 for line in lines:

 if patc.search(line): yield line

• Generate a sequence of lines that contain
a given regular expression

• Example:

lognames = gen_find("access-log*", "/usr/www")

logfiles = gen_open(lognames)

loglines = gen_cat(logfiles)

patlines = gen_grep(pat, loglines)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example

59

• Find out how many bytes transferred for a
specific pattern in a whole directory of logs

pat = r"somepattern"

logdir = "/some/dir/"

filenames = gen_find("access-log*",logdir)

logfiles = gen_open(filenames)

loglines = gen_cat(logfiles)

patlines = gen_grep(pat,loglines)

bytecolumn = (line.rsplit(None,1)[1] for line in patlines)

bytes = (int(x) for x in bytecolumn if x != '-')

print "Total", sum(bytes)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Important Concept

60

• Generators decouple iteration from the
code that uses the results of the iteration

• In the last example, we're performing a
calculation on a sequence of lines

• It doesn't matter where or how those
lines are generated

• Thus, we can plug any number of
components together up front as long as
they eventually produce a line sequence

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 4

61

Parsing and Processing Data

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Programming Problem

62

Web server logs consist of different columns of
data. Parse each line into a useful data structure
that allows us to easily inspect the different fields.

81.107.39.38 - - [24/Feb/2008:00:08:59 -0600] "GET ..." 200 7587

host referrer user [datetime] "request" status bytes

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Parsing with Regex
• Let's route the lines through a regex parser

63

logpats = r'(\S+) (\S+) (\S+) \[(.*?)\] '\

 r'"(\S+) (\S+) (\S+)" (\S+) (\S+)'

logpat = re.compile(logpats)

groups = (logpat.match(line) for line in loglines)

tuples = (g.groups() for g in groups if g)

• This generates a sequence of tuples

('71.201.176.194', '-', '-', '26/Feb/2008:10:30:08 -0600',

'GET', '/ply/ply.html', 'HTTP/1.1', '200', '97238')

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Tuple Commentary

• I generally don't like data processing on tuples

64

('71.201.176.194', '-', '-', '26/Feb/2008:10:30:08 -0600',

'GET', '/ply/ply.html', 'HTTP/1.1', '200', '97238')

• First, they are immutable--so you can't modify

• Second, to extract specific fields, you have to
remember the column number--which is
annoying if there are a lot of columns

• Third, existing code breaks if you change the
number of fields

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Tuples to Dictionaries
• Let's turn tuples into dictionaries

65

colnames = ('host','referrer','user','datetime',

 'method','request','proto','status','bytes')

log = (dict(zip(colnames,t)) for t in tuples)

• This generates a sequence of named fields

{ 'status' : '200',

 'proto' : 'HTTP/1.1',

 'referrer': '-',

 'request' : '/ply/ply.html',

 'bytes' : '97238',

 'datetime': '24/Feb/2008:00:08:59 -0600',

 'host' : '140.180.132.213',

 'user' : '-',

 'method' : 'GET'}

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Field Conversion
• You might want to map specific dictionary fields

through a conversion function (e.g., int(), float())

66

def field_map(dictseq,name,func):

 for d in dictseq:

 d[name] = func(d[name])

 yield d

• Example: Convert a few field values

log = field_map(log,"status", int)

log = field_map(log,"bytes",

 lambda s: int(s) if s !='-' else 0)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Field Conversion

• Creates dictionaries of converted values

67

{ 'status': 200,

 'proto': 'HTTP/1.1',

 'referrer': '-',

 'request': '/ply/ply.html',

 'datetime': '24/Feb/2008:00:08:59 -0600',

 'bytes': 97238,

 'host': '140.180.132.213',

 'user': '-',

 'method': 'GET'}

• Again, this is just one big processing pipeline

Note conversion

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Code So Far

68

lognames = gen_find("access-log*","www")

logfiles = gen_open(lognames)

loglines = gen_cat(logfiles)

groups = (logpat.match(line) for line in loglines)

tuples = (g.groups() for g in groups if g)

colnames = ('host','referrer','user','datetime','method',

 'request','proto','status','bytes')

log = (dict(zip(colnames,t)) for t in tuples)

log = field_map(log,"bytes",

 lambda s: int(s) if s != '-' else 0)

log = field_map(log,"status",int)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Getting Organized

69

• As a processing pipeline grows, certain parts of it
may be useful components on their own

generate lines
from a set of files

in a directory

Parse a sequence of lines from
Apache server logs into a
sequence of dictionaries

• A series of pipeline stages can be easily
encapsulated by a normal Python function

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Packaging

• Example : multiple pipeline stages inside a function

70

def lines_from_dir(filepat, dirname):

 names = gen_find(filepat,dirname)

 files = gen_open(names)

 lines = gen_cat(files)

 return lines

• This is now a general purpose component that can
be used as a single element in other pipelines

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Packaging

• Example : Parse an Apache log into dicts

71

def apache_log(lines):

 groups = (logpat.match(line) for line in lines)

 tuples = (g.groups() for g in groups if g)

 colnames = ('host','referrer','user','datetime','method',

 'request','proto','status','bytes')

 log = (dict(zip(colnames,t)) for t in tuples)

 log = field_map(log,"bytes",

 lambda s: int(s) if s != '-' else 0)

 log = field_map(log,"status",int)

 return log

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example Use

• It's easy

72

lines = lines_from_dir("access-log*","www")

log = apache_log(lines)

for r in log:

 print r

• Different components have been subdivided
according to the data that they process

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Food for Thought

• When creating pipeline components, it's
critical to focus on the inputs and outputs

• You will get the most flexibility when you
use a standard set of datatypes

• For example, using standard Python
dictionaries as opposed to custom objects

73

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Query Language

• Now that we have our log, let's do some queries

74

stat404 = set(r['request'] for r in log

 if r['status'] == 404)

• Find the set of all documents that 404

• Print all requests that transfer over a megabyte
large = (r for r in log

 if r['bytes'] > 1000000)

for r in large:

 print r['request'], r['bytes']

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Query Language

• Find the largest data transfer

75

print "%d %s" % max((r['bytes'],r['request'])

 for r in log)

• Collect all unique host IP addresses

hosts = set(r['host'] for r in log)

• Find the number of downloads of a file
sum(1 for r in log

 if r['request'] == '/ply/ply-2.3.tar.gz')

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Query Language

• Find out who has been hitting robots.txt

76

addrs = set(r['host'] for r in log

 if 'robots.txt' in r['request'])

import socket

for addr in addrs:

 try:

 print socket.gethostbyaddr(addr)[0]

 except socket.herror:

 print addr

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance Study

77

lines = lines_from_dir("big-access-log",".")

lines = (line for line in lines if 'robots.txt' in line)

log = apache_log(lines)

addrs = set(r['host'] for r in log)

...

• Sadly, the last example doesn't run so fast on a
huge input file (53 minutes on the 1.3GB log)

• But, the beauty of generators is that you can plug
filters in at almost any stage

• That version takes 93 seconds

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Thoughts

78

• I like the idea of using generator expressions as a
pipeline query language

• You can write simple filters, extract data, etc.

• You you pass dictionaries/objects through the
pipeline, it becomes quite powerful

• Feels similar to writing SQL queries

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 5

79

Processing Infinite Data

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Question

• Have you ever used 'tail -f' in Unix?

80

% tail -f logfile

...

... lines of output ...

...

• This prints the lines written to the end of a file

• The "standard" way to watch a log file

• I used this all of the time when working on
scientific simulations ten years ago...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Infinite Sequences

• Tailing a log file results in an "infinite" stream

• It constantly watches the file and yields lines as
soon as new data is written

• But you don't know how much data will actually
be written (in advance)

• And log files can often be enormous

81

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Tailing a File

• A Python version of 'tail -f'

82

import time

def follow(thefile):

 thefile.seek(0,2) # Go to the end of the file

 while True:

 line = thefile.readline()

 if not line:

 time.sleep(0.1) # Sleep briefly

 continue

 yield line

• Idea : Seek to the end of the file and repeatedly
try to read new lines. If new data is written to
the file, we'll pick it up.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example

• Using our follow function

83

logfile = open("access-log")

loglines = follow(logfile)

for line in loglines:

 print line,

• This produces the same output as 'tail -f'

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example

• Turn the real-time log file into records

84

logfile = open("access-log")

loglines = follow(logfile)

log = apache_log(loglines)

• Print out all 404 requests as they happen

r404 = (r for r in log if r['status'] == 404)

for r in r404:

 print r['host'],r['datetime'],r['request']

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Commentary

• We just plugged this new input scheme onto
the front of our processing pipeline

• Everything else still works, with one caveat-
functions that consume an entire iterable won't
terminate (min, max, sum, set, etc.)

• Nevertheless, we can easily write processing
steps that operate on an infinite data stream

85

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 6

86

Decoding Binary Records

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Incremental Parsing

• Generators are a useful way to incrementally
parse almost any kind of data

• One example : Small binary encoded records

• Python has a struct module that's used for this

• Let's look at a quick example

87

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Struct Example

• Suppose you had a file of binary records
encoded as follows

88

Byte offsets Description Encoding

-------------- --------------- ----------------------

0-8 Stock name (8 byte string)

9-11 Price (32-bit float)

12-15 Change (32-bit float)

16-19 Volume (32-bit unsigned int)

• Each record is 20 bytes

• Here's the underlying file

...
20 bytes 20 bytes 20 bytes 20 bytes

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Incremental Parsing

• Here's a generator that rips through a file of
binary encoded records and decodes them

89

genrecord.py

import struct

def gen_records(record_format, thefile):

 record_size = struct.calcsize(record_format)

 while True:

 raw_record = thefile.read(record_size)

 if not raw_record:

 break

 yield struct.unpack(record_format, raw_record)

• This reads record-by-record and decodes each
one using the struct library module

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Incremental Parsing

• Example:

90

from genrecord import *

f = open("stockdata.bin","rb")

records = gen_records("8sffi",f)

for name, price, change, volume in records:

 # Process data

 ...

• Notice : Logic concerning the file parsing and
record decoding is hidden from view

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Problem

• Reading files in small chunks (e.g., 20 bytes) is
grossly inefficient

• It would be better to read in larger chunks with
some underlying buffering

91

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Buffered Reading

• A generator that reads large chunks of data

92

def chunk_reader(thefile, chunksize):

 while True:

 chunk = thefile.read(chunksize)

 if not chunk: break

 yield chunk

• A generator that splits chunks into records
def split_chunks(chunk,recordsize):

 for n in xrange(0,len(chunk),recordsize):

 yield chunk[n:n+recordsize]

• Notice how these are general purpose

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Buffered Reading

• A new version of the record generator

93

genrecord2.py

import struct

def gen_records(record_format, thefile):

 record_size = struct.calcsize(record_format)

 chunks = chunk_reader(thefile,1000*record_size)

 records = split_chunks(chunks,record_size)

 for r in records:

 yield struct.unpack(record_format, r)

• This version is reading data 1000 records at a
time, but still producing a stream of individual
records

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 7

94

Flipping Everything Around
 (from generators to coroutines)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines and Generators

95

• Generator functions have been supported by
Python for some time (Python 2.3)

• In Python 2.5, generators picked up some
new features to allow "coroutines" (PEP-342).

• Most notably: a new send() method

• However, this feature is not nearly as well
understood as what we have covered so far

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Yield as an Expression

• In Python 2.5, can use yield as an expression

• For example, on the right side of an assignment

96

def grep(pattern):

 print "Looking for %s" % pattern

 while True:

 line = (yield)

 if pattern in line:

 print line,

• Question : What is its value?

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutines

• If you use yield more generally, you get a coroutine

• These do more than generate values

• Instead, functions can consume values sent to it.

97

>>> g = grep("python")

>>> g.next() # Prime it (explained shortly)

Looking for python

>>> g.send("Yeah, but no, but yeah, but no")

>>> g.send("A series of tubes")

>>> g.send("python generators rock!")

python generators rock!

>>>

• Sent values are returned by (yield)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutine Execution

• Execution is the same as for a generator

• When you call a coroutine, nothing happens

• They only run in response to next() and send()
methods

98

>>> g = grep("python")

>>> g.next()

Looking for python

>>>

Notice that no
output was
produced

On first operation,
coroutine starts

running

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Coroutine Priming
• All coroutines must be "primed" by first

calling .next() (or send(None))

• This advances execution to the location of the
first yield expression.

99

.next() advances the
coroutine to the

first yield expression

def grep(pattern):

 print "Looking for %s" % pattern

 while True:

 line = (yield)

 if pattern in line:

 print line,

• At this point, it's ready to receive a value

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Using a Decorator

• Remembering to call .next() is easy to forget

• Solved by wrapping coroutines with a decorator

100

def coroutine(func):

 def start(*args,**kwargs):

 cr = func(*args,**kwargs)

 cr.next()

 return cr

 return start

@coroutine

def grep(pattern):

 ...

• I will use this in most of the future examples

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Closing a Coroutine

• A coroutine might run indefinitely

• Use .close() to shut it down

101

>>> g = grep("python")

>>> g.next() # Prime it

Looking for python

>>> g.send("Yeah, but no, but yeah, but no")

>>> g.send("A series of tubes")

>>> g.send("python generators rock!")

python generators rock!

>>> g.close()

• Note: Garbage collection also calls close()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Catching close()
• close() can be caught (GeneratorExit)

102

• You cannot ignore this exception

• Only legal action is to clean up and return

@coroutine

def grep(pattern):

 print "Looking for %s" % pattern

 try:

 while True:

 line = (yield)

 if pattern in line:

 print line,

 except GeneratorExit:

 print "Going away. Goodbye"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 8

103

Coroutines, Pipelines, and Dataflow

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Processing Pipelines

104

• Coroutines can also be used to set up pipes

coroutine coroutine coroutine
send() send() send()

• You just chain coroutines together and push
data through the pipe with send() operations

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipeline Sources

105

• The pipeline needs an initial source (a producer)

coroutine
send() send()

source

• The source drives the entire pipeline

def source(target):

 while not done:

 item = produce_an_item()

 ...

 target.send(item)

 ...

 target.close()

• It is typically not a coroutine

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipeline Sinks

106

• The pipeline must have an end-point (sink)

coroutine
send() send()

• Collects all data sent to it and processes it

@coroutine

def sink():

 try:

 while True:

 item = (yield) # Receive an item

 ...

 except GeneratorExit: # Handle .close()

 # Done

 ...

sink

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Example

107

• A source that mimics Unix 'tail -f'
import time

def follow(thefile, target):

 thefile.seek(0,2) # Go to the end of the file

 while True:

 line = thefile.readline()

 if not line:

 time.sleep(0.1) # Sleep briefly

 continue

 target.send(line)

• A sink that just prints the lines
@coroutine

def printer():

 while True:

 line = (yield)

 print line,

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Example

108

• Hooking it together
f = open("access-log")

follow(f, printer())

follow()
send()

printer()

• A picture

• Critical point : follow() is driving the entire
computation by reading lines and pushing them
into the printer() coroutine

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipeline Filters

109

• Intermediate stages both receive and send

coroutine
send() send()

• Typically perform some kind of data
transformation, filtering, routing, etc.

@coroutine

def filter(target):

 while True:

 item = (yield) # Receive an item

 # Transform/filter item

 ...

 # Send it along to the next stage

 target.send(item)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Filter Example

110

• A grep filter coroutine
@coroutine

def grep(pattern,target):

 while True:

 line = (yield) # Receive a line

 if pattern in line:

 target.send(line) # Send to next stage

• Hooking it up
f = open("access-log")

follow(f,

 grep('python',

 printer()))

follow() grep() printer()
send() send()

• A picture

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

111

• Coroutines flip generators around

generator
input

sequence
for x in s:generator generator

source coroutine coroutine
send() send()

generators/iteration

coroutines

• Key difference. Generators pull data through
the pipe with iteration. Coroutines push data
into the pipeline with send().

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Being Branchy

112

• With coroutines, you can send data to multiple
destinations

source coroutine

coroutine

send() send()

• The source simply "sends" data. Further routing
of that data can be arbitrarily complex

coroutine

coroutinesend()

send()

coroutine

send()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example : Broadcasting

113

• Broadcast to multiple targets
@coroutine

def broadcast(targets):

 while True:

 item = (yield)

 for target in targets:

 target.send(item)

• This takes a sequence of coroutines (targets)
and sends received items to all of them.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example : Broadcasting

114

• Example use:

f = open("access-log")

follow(f,

 broadcast([grep('python',printer()),

 grep('ply',printer()),

 grep('swig',printer())])

)

follow broadcast

printer()grep('python')

grep('ply')

grep('swig') printer()

printer()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Example : Broadcasting

115

• A more disturbing variation...
f = open("access-log")

p = printer()

follow(f,

 broadcast([grep('python',p),

 grep('ply',p),

 grep('swig',p)])

)

follow broadcast

grep('python')

grep('ply')

grep('swig')

printer()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

116

• Coroutines provide more powerful data routing
possibilities than simple iterators

• If you built a collection of simple data processing
components, you can glue them together into
complex arrangements of pipes, branches,
merging, etc.

• Although you might not want to make it
excessively complicated (although that might
increase/decrease one's job security)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 9

117

Coroutines and Event Dispatching

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Event Handling

118

• Coroutines can be used to write various
components that process event streams

• Pushing event streams into coroutines

• Let's look at an example...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Problem

119

• Where is my ^&#&@* bus?

• Chicago Transit Authority (CTA) equips most
of its buses with real-time GPS tracking

• You can get current data on every bus on the
street as a big XML document

• Use "The Google" to search for details...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some XML

120

<?xml version="1.0"?>

 <buses>

 <bus>

 !! <id>7574</id>

 !! <route>147</route>

 !! <color>#3300ff</color>

 !! <revenue>true</revenue>

 !! <direction>North Bound</direction>

 !! <latitude>41.925682067871094</latitude>

 !<longitude>-87.63092803955078</longitude>

 !<pattern>2499</pattern>

 !<patternDirection>North Bound</patternDirection>

 ! <run>P675</run>

 <finalStop><![CDATA[Paulina & Howard Terminal]]></finalStop>

 <operator>42493</operator>

 </bus>

 <bus>

 ...

 </bus>

 </buses>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

XML Parsing

121

• There are many possible ways to parse XML

• An old-school approach: SAX

• SAX is an event driven interface

XML Parser
events

Handler Object

class Handler:

 def startElement():

 ...

 def endElement():

 ...

 def characters():

 ...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Minimal SAX Example

122

• You see this same programming pattern in
other settings (e.g., HTMLParser module)

import xml.sax

class MyHandler(xml.sax.ContentHandler):

 def startElement(self,name,attrs):

 print "startElement", name

 def endElement(self,name):

 print "endElement", name

 def characters(self,text):

 print "characters", repr(text)[:40]

xml.sax.parse("somefile.xml",MyHandler())

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Some Issues

123

• SAX is often used because it can be used to
incrementally process huge XML files without
a large memory footprint

• However, the event-driven nature of SAX
parsing makes it rather awkward and low-level
to deal with

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

From SAX to Coroutines

124

• You can dispatch SAX events into coroutines

• Consider this SAX handler
import xml.sax

class EventHandler(xml.sax.ContentHandler):

 def __init__(self,target):

 self.target = target

 def startElement(self,name,attrs):

 self.target.send(('start',(name,attrs._attrs)))

 def characters(self,text):

 self.target.send(('text',text))

 def endElement(self,name):

 self.target.send(('end',name))

• It does nothing, but send events to a target

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Event Stream

125

• The big picture

SAX Parser
events

Handler (event,value)

('direction',{})

'direction'

'North Bound'

'start'

'end'

'text'

Event type Event values

send()

• Observe : Coding this was straightforward

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Event Processing

126

• To do anything interesting, you have to
process the event stream

• Example: Convert bus elements into
dictionaries (XML sucks, dictionaries rock)

 <bus>

 !! <id>7574</id>

 !! <route>147</route>

 !! <revenue>true</revenue>

 !! <direction>North Bound</direction>

 !! ...

 </bus>

{

 'id' : '7574',

 'route' : '147',

 'revenue' : 'true',

 'direction' : 'North Bound'

 ...

}

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Buses to Dictionaries

127

@coroutine

def buses_to_dicts(target):

 while True:

 event, value = (yield)

 # Look for the start of a <bus> element

 if event == 'start' and value[0] == 'bus':

 busdict = { }

 fragments = []

 # Capture text of inner elements in a dict

 while True:

 event, value = (yield)

 if event == 'start': fragments = []

 elif event == 'text': fragments.append(value)

 elif event == 'end':

 if value != 'bus':

 busdict[value] = "".join(fragments)

 else:

 target.send(busdict)

 break

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

State Machines

128

• The previous code works by implementing a
simple state machine

A B
('start',('bus',*))

('end','bus')

• State A: Looking for a bus

• State B: Collecting bus attributes

• Comment : Coroutines are perfect for this

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Buses to Dictionaries

129

@coroutine

def buses_to_dicts(target):

 while True:

 event, value = (yield)

 # Look for the start of a <bus> element

 if event == 'start' and value[0] == 'bus':

 busdict = { }

 fragments = []

 # Capture text of inner elements in a dict

 while True:

 event, value = (yield)

 if event == 'start': fragments = []

 elif event == 'text': fragments.append(value)

 elif event == 'end':

 if value != 'bus':

 busdict[value] = "".join(fragments)

 else:

 target.send(busdict)

 break

A

B

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Filtering Elements

130

• Let's filter on dictionary fields

@coroutine

def filter_on_field(fieldname,value,target):

 while True:

 d = (yield)

 if d.get(fieldname) == value:

 target.send(d)

• Examples:
filter_on_field("route","22",target)

filter_on_field("direction","North Bound",target)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Processing Elements

131

• Where's my bus?

@coroutine

def bus_locations():

 while True:

 bus = (yield)

 print "%(route)s,%(id)s,\"%(direction)s\","\

 "%(latitude)s,%(longitude)s" % bus

• This receives dictionaries and prints a table

22,1485,"North Bound",41.880481123924255,-87.62948191165924

22,1629,"North Bound",42.01851969751819,-87.6730209876751

...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Hooking it Together

132

• Find all locations of the North Bound #22 bus
(the slowest moving object in the universe)

xml.sax.parse("allroutes.xml",

 EventHandler(

 buses_to_dicts(

 filter_on_field("route","22",

 filter_on_field("direction","North Bound",

 bus_locations())))

))

• This final step involves a bit of plumbing, but
each of the parts is relatively simple

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

How Low Can You Go?

133

• I've picked this XML example for reason

• One interesting thing about coroutines is that
you can push the initial data source as low-
level as you want to make it without rewriting
all of the processing stages

• Let's say SAX just isn't quite fast enough...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

XML Parsing with Expat

134

• Let's strip it down....

import xml.parsers.expat

def expat_parse(f,target):

 parser = xml.parsers.expat.ParserCreate()

 parser.buffer_size = 65536

 parser.buffer_text = True

 parser.returns_unicode = False

 parser.StartElementHandler = \

 lambda name,attrs: target.send(('start',(name,attrs)))

 parser.EndElementHandler = \

 lambda name: target.send(('end',name))

 parser.CharacterDataHandler = \

 lambda data: target.send(('text',data))

 parser.ParseFile(f)

• expat is low-level (a C extension module)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance Contest

135

• SAX version (on a 30MB XML input)
xml.sax.parse("allroutes.xml",EventHandler(

 buses_to_dicts(

 filter_on_field("route","22",

 filter_on_field("direction","North Bound",

 bus_locations())))))

• Expat version
expat_parse(open("allroutes.xml"),

 buses_to_dicts(

 filter_on_field("route","22",

 filter_on_field("direction","North Bound",

 bus_locations()))))

8.37s

4.51s

(83% speedup)

• No changes to the processing stages

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Going Lower

136

• You can even drop send() operations into C

• A skeleton of how this works...
PyObject *

py_parse(PyObject *self, PyObject *args) {

 PyObject *filename;

 PyObject *target;

 PyObject *send_method;

if (!PyArg_ParseArgs(args,"sO",&filename,&target)) {

 return NULL;

}

send_method = PyObject_GetAttrString(target,"send");

...

/* Invoke target.send(item) */

args = Py_BuildValue("(O)",item);

result = PyEval_CallObject(send_meth,args);

...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Performance Contest

137

• Expat version
expat_parse(open("allroutes.xml"),

 buses_to_dicts(

 filter_on_field("route","22",

 filter_on_field("direction","North Bound",

 bus_locations())))))

4.51s

• A custom C extension written directly on top
of the expat C library (code not shown)

cxmlparse.parse("allroutes.xml",

 buses_to_dicts(

 filter_on_field("route","22",

 filter_on_field("direction","North Bound",

 bus_locations())))))

2.95s

(55% speedup)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Interlude

138

• Processing events is a situation that is well-
suited for coroutine functions

• With event driven systems, some kind of event
handling loop is usually in charge

• Because of that, it's really hard to twist it
around into a programming model based on
iteration

• However, if you just push events into
coroutines with send(), it works fine.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Part 10

139

From Data Processing to Concurrent Programming

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Story So Far

140

• Generators and coroutines can be used to
define small processing components that can
be connected together in various ways

• You can process data by setting up pipelines,
dataflow graphs, etc.

• It's all been done in simple Python programs

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

An Interesting Twist

141

• Pushing data around nicely ties into problems
related to threads, processes, networking,
distributed systems, etc.

• Could two generators communicate over a
pipe or socket?

• Answer : Yes, of course

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Basic Concurrency

142

• You can package generators inside threads or
subprocesses by adding extra layers

source generator

generator

generator

generator generator

Thread

Thread

Subprocess

Host

socket

pipe

queue

queue

• Will sketch out some basic ideas...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pipelining over a Pipe

• Suppose you wanted to bridge a generator/
coroutine data flow across a pipe or socket

• Doing that is actually pretty easy

• Just use the pickle module to serialize objects
and add some functions to deal with the
communication

143

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pickler/Unpickler

• Turn a generated sequence into pickled objects

144

def gen_sendto(source,outfile):

 for item in source:

 pickle.dump(item,outfile)

def gen_recvfrom(infile):

 while True:

 try:

 item = pickle.load(infile)

 yield item

 except EOFError:

 return

• Now, attach these to a pipe or socket

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Sender/Receiver
• Example: Sender

145

netprod.py

import subprocess

p = subprocess.Popen(['python','netcons.py'],

 stdin=subprocess.PIPE)

lines = follow(open("access-log"))

log = apache_log(lines)

gen_sendto(log,p.stdin)

• Example: Receiver
netcons.py

import sys

for r in get_recvfrom(sys.stdin):

 print r

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Subprocess Target

146

• Bridging coroutines over a pipe/socket
@coroutine

def co_sendto(f):

 try:

 while True:

 item = (yield)

 pickle.dump(item,f)

 f.flush()

 except StopIteration:

 f.close()

def co_recvfrom(f,target):

 try:

 while True:

 item = pickle.load(f)

 target.send(item)

 except EOFError:

 target.close()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Subprocess Target

147

• High Level Picture

co_sendto()

pickle.dump()

co_recvfrom()

pickle.load()

pipe/socket

• Of course, the devil is in the details...

• You would not do this unless you can recover
the cost of the underlying communication
(e.g., you have multiple CPUs and there's
enough processing to make it worthwhile)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Process Example

148

• A parent process
Launch a child process

import subprocess

p = subprocess.Popen(['python','child.py'],

 stdin=subprocess.PIPE)

Feed data into the child

xml.sax.parse("allroutes.xml", EventHandler(

 buses_to_dicts(

 co_sendto(p.stdin))))

• A child process
child.py

import sys

...

co_recvfrom(sys.stdin,

 filter_on_field("route","22",

 filter_on_field("direction","North Bound",

 bus_locations())))

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

A Picture

149

• Here is an overview of the last example

xml.sax.parse

filter_on_field

subprocess
EventHandler

buses_to_dicts

filter_on_field

bus_locations

Main Program

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Wrap Up

150

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

The Big Idea

• Generators are an incredibly useful tool for a
variety of "systems" related problem

• Power comes from the ability to set up
processing pipelines and route data around

• Can create components that plugged into the
pipeline as reusable pieces

• Can extend processing pipelines in many
directions (networking, threads, etc.)

151

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Code Reuse

• There is an interesting reuse element

• You create a lot of small processing parts
and glue them together to build larger apps

• Personally, I like it a lot better than what I
see people doing with various OO patterns
involving callbacks (e.g., the strategy design
pattern and variants)

152

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Pitfalls

153

• Programming with generators involves
techniques that a lot of programmers have
never seen before in other languages

• Springing this on the uninitiated might cause
their head to explode

• Error handling is really tricky because you have
lots of components chained together and the
control-flow is unconventional

• Need to pay careful attention to debugging,
reliability, and other issues.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Shameless Plug

154

• Further details on useful applications of
generators and coroutines will be featured in
the "Python Essential Reference, 4th Edition"

• Look for it (Summer 2009)

• I also teach Python classes

Copyright (C) 2009, David Beazley, http://www.dabeaz.com

Thanks!

155

• I hope you got some new ideas from this class

• Please feel free to contact me

http://www.dabeaz.com

