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Course Overview

• An overview of Python in two acts

• Part I : Writing scripts and 
manipulating data

• Part II : Getting organized (functions, 
modules, objects)

• It's not a comprehensive reference, but 
there will be a lot of examples and topics 
to give you a taste of what Python 
programming is all about
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Prerequisites

• I'm going to assume that...

• you have written programs

• you know about basic data structures

• you know what a function is

• you know about basic system concepts 
(files, I/O, processes, threads, network, etc.)

• I do not assume that you know Python

3
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My Background

• C/assembler programming

• Started using Python in 1996 as a control 
language for physics software running on 
supercomputers at Los Alamos.

• Author: "Python Essential Reference"

• Developer of several open-source packages 

• Currently working on parsing/compiler 
writing tools for Python.

4
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What is Python?

• An interpreted, dynamically typed 
programming language.

• In other words:  A language that's similar to 
Perl, Ruby, Tcl, and other so-called "scripting 
languages."

• Created by Guido van Rossum around 1990.

• Named in honor of Monty Python

5
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Why was Python Created?

6

"My original motivation for creating Python was 
the perceived need for a higher level language 
in the Amoeba [Operating Systems] project.   I 
realized that the development of system 
administration utilities in C was taking too long.  
Moreover, doing these things in the Bourne 
shell wouldn't work for a variety of reasons. ... 
So, there was a need for a language that would 
bridge the gap between C and the shell."

- Guido van Rossum
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Important Influences

• C (syntax, operators, etc.)

• ABC (syntax, core data types, simplicity)

• Unix ("Do one thing well")

• Shell programming (but not the syntax)

• Lisp, Haskell, and Smalltalk (later features)
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Some Uses of Python

• Text processing/data processing

• Application scripting

• Systems administration/programming

• Internet programming

• Graphical user interfaces

• Testing

• Writing quick "throw-away" code

8
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More than "Scripting"

• Although Python is often used for "scripting", 
it is a general purpose programming language

• Major applications are written in Python

• Large companies you have heard of are using 
hundreds of thousands of lines of Python.

9
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Part 1

10

Getting Started
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Where to get Python?

• Site for downloads, community links, etc.

• Current production version: Python-2.6.2

• Supported on virtually all platforms

11

http://www.python.org
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Support Files

• Program files, examples, and datafiles for this 
tutorial are available here:
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http://www.dabeaz.com/usenix2009/pythonprog/

• Please go there and follow along
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Running Python (Unix)

• From the shell
shell % python
Python 2.5.1 (r251:54869, Apr 18 2007, 22:08:04) 
[GCC 4.0.1 (Apple Computer, Inc. build 5367)] on darwin
Type "help", "copyright", "credits" or "license" 
>>> 

• Integrated Development Environment (IDLE)

shell % idle or

13
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Running Python (win)

• Start Menu (IDLE or PythonWin)

14
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Python Interpreter

• All programs execute in an interpreter

• If you give it a filename, it interprets the 
statements in that file in order

• Otherwise, you get an "interactive" mode 
where you can experiment

• There is no compilation

15
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Interactive Mode
• Read-eval loop

>>> print "hello world"
hello world
>>> 37*42
1554
>>> for i in range(5):
...     print i
...
0
1
2
3
4
>>>

• Executes simple statements typed in directly

• This is one of the most useful features

16
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Creating Programs

• Programs are put in .py files
# helloworld.py
print "hello world"

• Source files are simple text files

• Create with your favorite editor (e.g., emacs)

• Note: There may be special editing modes 

• There are many IDEs (too many to list)

17
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Creating Programs
• Creating a new program in IDLE
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Creating Programs
• Editing a new program in IDLE
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Creating Programs
• Saving a new Program in IDLE
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Running Programs

• In production environments, Python may be 
run from command line or a script

• Command line (Unix)
shell % python helloworld.py
hello world
shell % 

• Command shell (Windows)

C:\Somewhere>c:\python26\python helloworld.py
hello world
C:\Somewhere>

21
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Running Programs (IDLE)
• Select "Run Module" (F5) 

• Will see output in IDLE shell window

22
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Part 2

23

Python 101 - A First Program
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A Sample Program
• Dave's Mortgage

Dave has taken out a $500,000 mortgage from 
Guido's Mortgage, Stock, and Viagra trading 
corporation.  He got an unbelievable rate of 4% and a 
monthly payment of only $499.  However, Guido, being 
kind of soft-spoken, didn't tell Dave that after 2 years, 
the rate changes to 9% and the monthly payment 
becomes $3999.

24

• Question:  How much does Dave pay and 
how many months does it take?
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mortgage.py
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:
      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09
          payment = 3999

print "Total paid", total_paid
print "Months", months

25
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Python 101: Statements
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:
      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09
          payment = 3999

print "Total paid", total_paid
print "Months", months

26

Each statement appears 
on its own line

No semicolons
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Python 101: Comments
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:
      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09
          payment = 3999

print "Total paid", total_paid
print "Months", months

27

# starts a comment which 
extends to the end of the line
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Python 101: Variables
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:
      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09
          payment = 3999

print "Total paid", total_paid
print "Months", months

28

Variables are declared by 
assigning a name to a value.

• Same name rules as C 
  ([a-zA-Z_][a-zA-Z0-9_]*)

• You do not declare types 
  like int, float, string, etc.

• Type depends on value
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Python 101:  Keywords
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:
      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09
          payment = 3999

print "Total paid", total_paid
print "Months", months

29

Python has a small set of
keywords and statements

Keywords are C-like
and
assert

break

class
continue

def
del
elif

else

except
exec
finally
for

from
global
if

import
in
is
lambda
not
or
pass
print

raise
return

try
while

yield
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Python 101:  Looping
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:

      principle = principle*(1+rate/12) - payment

      total_paid += payment

      months     += 1

      if months == 24:

          rate    = 0.09

          payment = 3999

print "Total paid", total_paid
print "Months", months

30

while executes a loop as
long as a condition is True

loop body denoted
by indentation

while expression:
   statements
   ...
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Python 101:  Conditionals
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:
      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09

          payment = 3999

print "Total paid", total_paid
print "Months", months

31

if-elif-else checks a condition

 body of conditional
denoted by indentation

if expression:
   statements
   ...
elif expression:
   statements
   ...
else:
   statements
   ...
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Python 101:  Indentation
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:

      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09
          payment = 3999

print "Total paid", total_paid
print "Months", months

32

: indicates that an indented 
block will follow
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Python 101:  Indentation
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:

      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09
          payment = 3999

print "Total paid", total_paid
print "Months", months

33

Python only cares about consistent 
indentation in the same block
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Python 101:  Primitive Types
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:
      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09
          payment = 3999

print "Total paid", total_paid
print "Months", months

34

Numbers:
• Integer
• Floating point

Strings
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Python 101:  Expressions
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:
      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09
          payment = 3999

print "Total paid", total_paid
print "Months", months

35

Python uses conventional 
syntax for operators and 

expressions

Basic Operators
+ - * / // % ** << >> | & ^
< > <= >= == != and or not
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More on Relations

• Boolean expressions:  and, or, not

36

if b >= a and b <= c:
    print "b is between a and c"

if not (b < a or b > c):
    print "b is still between a and c"

• Don't use &&, ||, and ! as in C

&&          and
||          or
!           not

• Relations do not require surrounding ( )
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Python 101:  Output
# mortgage.py

principle  = 500000        # Initial principle
payment    = 499           # Monthly payment
rate       = 0.04          # The interest rate
total_paid = 0             # Total amount paid
months     = 0             # Number of months

while principle > 0:
      principle = principle*(1+rate/12) - payment
      total_paid += payment
      months     += 1
      if months == 24:
          rate    = 0.09
          payment = 3999

print "Total paid", total_paid

print "Months", months

37

print writes to standard output
• Items are separated by spaces
• Includes a terminating newline
• Works with any Python object
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Running the Program
• Command line

38

shell % python mortgage.py
Total paid 2623323
Months 677
shell %

• Keeping the interpreter alive (-i option or IDLE)

shell % python -i mortgage.py
Total paid 2623323
Months 677
>>> months/12
56
>>>

• In this latter mode, you can inspect variables 
and continue to type statements.
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Interlude
• If you know another language, you already 

know a lot of Python

• Python uses standard conventions for 
statement names,  variable names, 
numbers, strings, operators, etc.

• There is a standard set of primitive types 
such as integers, floats, and strings that look 
the same as in other languages.

• Indentation is most obvious "new" feature

39
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Getting Help
• Online help is often available

• help() command (interactive mode)

• Documentation at http://www.python.org

40
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dir() function

• dir() returns list of symbols

>>> import sys
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', 
'__name__', '__stderr__', '__stdin__', '__stdout__', 
'_current_frames', '_getframe', 'api_version', 'argv', 
'builtin_module_names', 'byteorder', 'call_tracing', 
'callstats', 'copyright', 'displayhook', 'exc_clear', 
'exc_info', 'exc_type', 'excepthook', 'exec_prefix', 
'executable', 'exit', 'getcheckinterval', 
 ...
'version_info', 'warnoptions']

• Useful for exploring, inspecting objects, etc.

41
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Part 3

42

Basic Datatypes and File I/O
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More on Numbers
• Numeric Datatypes

a = True          # A boolean (True or False)
b = 42            # An integer (32-bit signed)
c = 81237742123L  # A long integer (arbitrary precision)
d = 3.14159       # Floating point (double precision)

43

• Integer operations that overflow become longs
>>> 3 ** 73
67585198634817523235520443624317923L
>>> a = 72883988882883812
>>> a
72883988882883812L
>>>

• Integer division truncates (for now)
>>> 5/4
1
>>>
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More on Strings
• String literals use several quoting styles

44

a = "Yeah but no but yeah but..."

b = 'computer says no'

c = '''
Look into my eyes, look into my eyes,
the eyes, the eyes, the eyes,
not around the eyes, 
don't look around the eyes,
look into my eyes, you're under.
'''

• Standard escape sequences work (e.g., '\n')

• Triple quotes capture all literal text enclosed



Copyright (C) 2009, David Beazley,  http://www.dabeaz.com 1-

Basic String Manipulation
• Length of a string

45

n = len(s)       # Number of characters in s

• String concatenation
s = "Hello"
t = "World"
a = s + t        # a = "HelloWorld"

• Strings as arrays : s[n]
s = "Hello"
s[1]      'e'
s[-1]     'o'

• Slices : s[start:end]
s[1:3]    "el"
s[:4]     "Hell"
s[-4:]    "ello"

H e l l o
0 1 2 3 4

H e l l o
0 1 2 3 4

s[1]

s[1:3]
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Type Conversion

• Converting between data types
a = int(x)        # Convert x to an integer
b = long(x)       # Convert x to a long
c = float(x)      # Convert x to a float
d = str(x)        # Convert x to a string

46

• Examples:
>>> int(3.14)
3
>>> str(3.14)
'3.14'
>>> int("0xff")
255
>>>
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Programming Problem
• Dave's stock scheme

After watching 87 straight 
hours of "Guido's Insane 
Money" on his Tivo, Dave 
hatched a get rich scheme and 
purchased a bunch of stocks.

47

• Write a program that reads this file, prints a 
report, and computes how much Dave spent 
during his late night stock "binge."

INSANE
MONEY

w/ GUIDO

PY 142.34 (+8.12) JV 34.23 (-4.23) CPP 4.10 (-1.34) NET 14.12 (-0.50) 

He can no longer remember the evil scheme, but 
he still has the list of stocks in a file "portfolio.dat". 
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The Input File

IBM     50     91.10
MSFT   200     51.23
GOOG   100    490.10
AAPL    50    118.22
YHOO    75     28.34
SCOX   500      2.14
RHT     60     23.45

48

• Input file: portfolio.dat

• The data:  Name, Shares, Price per Share
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portfolio.py
# portfolio.py

total = 0.0
f     = open("portfolio.dat","r")

for line in f:
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    total += shares*price
    print  "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

49
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Python File I/O
# portfolio.py

total = 0.0
f     = open("portfolio.dat","r")

for line in f:
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    total += shares*price
    print  "%-10s %8d %10.2f" % (name,shares,price)

f.close()

print "Total", total

50

Files are modeled after C stdio.
• f = open() - opens a file
• f.close() - closes the file

Data is just a sequence of bytes

"r"  - Read
"w"  - Write
"a"  - Append
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Reading from a File
# portfolio.py

total = 0.0
f     = open("portfolio.dat","r")

for line in f:

    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    total += shares*price
    print  "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

51

Loops over all lines in the file.
Each line is returned as a string.

Alternative reading methods:

• f.read([nbytes])
• f.readline()
• f.readlines()

Copyright (C) 2009, David Beazley,  http://www.dabeaz.com 1-

String Processing
# portfolio.py

total = 0.0
f     = open("portfolio.dat","r")

for line in f:
    fields = line.split()

    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    total += shares*price
    print  "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

52

Strings have various "methods."
split() splits a string into a list of strings

line = 'IBM     50     91.10\n'

fields = ['IBM', '50', '91.10']

fields = line.split()
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Lists
# portfolio.py

total = 0.0
f     = open("portfolio.dat","r")

for line in f:
    fields = line.split()

    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    total += shares*price
    print  "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

53

A 'list' is an ordered sequence
of objects.  It's like an array.

fields = ['IBM', '50', '91.10']
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Types and Operators
# portfolio.py

total = 0.0
f     = open("portfolio.dat","r")

for line in f:
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    total += shares*price
    print  "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

54

To work with data, it must be
converted to an appropriate 
type (e.g., number, string, etc.)

Operators only work if objects
have "compatible" types
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String Formatting
# portfolio.py

total = 0.0
f     = open("portfolio.dat","r")

for line in f:
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    total += shares*price
    print  "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total cost", total

55

% operator when applied to a
string, formats it.  Similar to 
the C printf() function.

format string values
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Sample Output

shell % python portfolio.py
IBM              50      91.10
MSFT            200      51.23
GOOG            100     490.10
AAPL             50     118.22
YHOO             75      28.34
SCOX            500       2.14
RHT              60      23.45
Total 74324.5
shell % 

56



Copyright (C) 2009, David Beazley,  http://www.dabeaz.com 1-

More on Files

57

• Opening a file
f = open("filename","r")     # Reading
g = open("filename","w")     # Writing
h = open("filename","a")     # Appending

• Reading
f.read([nbytes])        # Read bytes
f.readline()            # Read a line
f.readlines()           # Read all lines into a list

• Writing
g.write("Hello World\n")   # Write text
print >>g, "Hello World"   # print redirection

• Closing
f.close()
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More String Methods
s.endswith(suffix)   # Check if string ends with suffix
s.find(t)            # First occurrence of t in s
s.index(t)           # First occurrence of t in s
s.isalpha()          # Check if characters are alphabetic
s.isdigit()          # Check if characters are numeric
s.islower()          # Check if characters are lower-case
s.isupper()          # Check if characters are upper-case
s.join(slist)        # Joins lists using s as delimeter 
s.lower()            # Convert to lower case
s.replace(old,new)   # Replace text
s.rfind(t)           # Search for t from end of string
s.rindex(t)          # Search for t from end of string
s.split([delim])     # Split string into list of substrings
s.startswith(prefix) # Check if string starts with prefix
s.strip()            # Strip leading/trailing space
s.upper()            # Convert to upper case

58
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More on Operators
• Python has a standard set of operators

• Have different behavior depending on the 
types of operands.
>>> 3 + 4                 # Integer addition
7
>>> '3' + '4'             # String concatenation
'34'
>>> 

• This is why you must be careful to convert 
values to an appropriate type. 

• One difference between Python and text 
processing tools (e.g., awk, perl, etc.).

59
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Part 4

60

List Processing
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More on Lists

• A indexed sequence of arbitrary objects

fields = ['IBM','50','91.10']

• Can contain mixed types 

fields = ['IBM',50, 91.10]

• Can contain other lists:

61

portfolio = [ ['IBM',50,91.10],
              ['MSFT',200,51.23],
              ['GOOG',100,490.10] ]
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List Manipulation
• Accessing/changing items : s[n], s[n] = val

fields = [ 'IBM', 50, 91.10 ]

name  = fields[0]        # name = 'IBM'
price = fields[2]        # price = 91.10
fields[1] = 75           # fields = ['IBM',75,91.10]

• Slicing : s[start:end], s[start:end] = t

vals = [0, 1, 2, 3, 4, 5, 6]
vals[0:4]           [0, 1, 2, 3]
vals[-2:]           [5, 6]
vals[:2]            [0, 1]

vals[2:4] = ['a','b','c']
# vals = [0, 1, 'a', 'b', 'c', 4, 5, 6 ]

62
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List Manipulation

• Length : len(s)
fields = [ 'IBM', 50, 91.10 ]
len(fields)         3

• Appending/inserting

fields.append('11/16/2007')  
fields.insert(0,'Dave')

# fields = ['Dave', 'IBM', 50, 91.10, '11/16/2007']

• Deleting an item

del fields[0]  # fields = ['IBM',50,91.10,'11/16/2007']

63
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Some List Methods

s.append(x)          # Append x to end of s
s.extend(t)          # Add items in t to end of s
s.count(x)           # Count occurences of x in s
s.index(x)           # Return index of x in s
s.insert(i,x)        # Insert x at index i
s.pop([i])           # Return element i and remove it
s.remove(x)          # Remove first occurence of x
s.reverse()          # Reverses items in list
s.sort()             # Sort items in s in-place

64
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Programming Problem

• Dave's stock portfolio

Dave still can't remember his evil "get rich 
quick" scheme, but if it involves a Python 
program, it will almost certainly involve some 
data structures.

65

• Write a program that reads the stocks in 
'portfolio.dat' into memory.  Alphabetize the 
stocks and print a report.   Calculate the 
initial value of the portfolio.
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The Previous Program
# portfolio.py

total = 0.0
f     = open("portfolio.dat","r")

for line in f:
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    total += shares*price
    print  "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

66
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Simplifying the I/O
# portfolio.py

total = 0.0

for line in open("portfolio.dat"):

    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    total += shares*price
    print  "%-10s %8d %10.2f" % (name,shares,price)

print "Total", total
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Opens a file, 
iterates over all lines,

and closes at EOF.
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Building a Data Structure
# portfolio.py

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    holding= (name,shares,price)
    stocks.append(holding)

# print "Total", total

68

A list of "stocks"

Create a stock
record and append

to the stock list
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Tuples - Compound Data
# portfolio.py

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    holding= (name,shares,price)
    stocks.append(holding)

# print "Total", total
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A tuple is the most primitive 
compound data type (a sequence 
of objects grouped together)

How to write a tuple:
t = (x,y,z)
t = x,y,z   # ()'s are optional
t = ()      # An empty tuple
t = (x,)    # A 1-item tuple
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A List of Tuples
# portfolio.py

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    holding= (name,shares,price)
    stocks.append(holding)

# print "Total", total
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stocks = [
   ('IBM', 50, 91.10),
   ('MSFT', 200, 51.23),
   ('GOOG', 100, 490.10),
   ('AAPL', 50, 118.22),
   ('SCOX', 500, 2.14),
   ('RHT', 60, 23.45) 
]

stocks[2]       ('GOOG',100,490.10)
stocks[2][1]    100

This works like a 2D array
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Sorting a List
# portfolio.py

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    holding= (name,shares,price)
    stocks.append(holding)

stocks.sort()

# print "Total", total
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('GOOG',100,490.10)
...
('AAPL',50,118.22)

.sort() sorts a list "in-place"

Note: Tuples are compared 
element-by-element
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Looping over Sequences
# portfolio.py

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    holding= (name,shares,price)
    stocks.append(holding)

stocks.sort()
for s in stocks:

    print "%-10s %8d %10.2f" % s

# print "Total", total

72

for statement iterates over 
any object that looks like a 

sequence (list, tuple, file, etc.)
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Formatted I/O (again)
# portfolio.py

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    holding= (name,shares,price)
    stocks.append(holding)

stocks.sort()
for s in stocks:
    print "%-10s %8d %10.2f" % s

# print "Total cost", total
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On each iteration, s is a tuple 
(name,shares,price)

s = ('IBM',50,91.10)
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Calculating a Total
# portfolio.py

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    holding= (name,shares,price)
    stocks.append(holding)

stocks.sort()
for s in stocks:
    print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])

print "Total", total
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Calculate the total value of the 
portfolio by summing shares*price 
across all of the stocks
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Sequence Reductions
# portfolio.py

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    holding= (name,shares,price)
    stocks.append(holding)

stocks.sort()
for s in stocks:
    print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total
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Useful functions for reducing data:

sum(s) - Sums items in a sequence
min(s) - Min value in a sequence
max(s) - Max value in a sequence 
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List Creation
# portfolio.py

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    holding= (name,shares,price)
    stocks.append(holding)

stocks.sort()
for s in stocks:
    print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total
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This operation creates a new list.
(known as a "list comprehension")

stocks = [
   ('IBM',50,91.10),
   ('MSFT',200,51.23),
   ('GOOG',100,490.10),
   ('AAPL',50,118.22),
   ('SCOX',500,2.14),
   ('RHT',60,23.45) 
]

[s[1]*s[2] for s in stocks] = [
   50*91.10,
   200*51.23,
   100*490.10,
   50*118.22,
   500*2.14,
   60*23.45 
]
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Finished Solution
# portfolio.py

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    name   = fields[0]
    shares = int(fields[1])
    price  = float(fields[2])
    holding= (name,shares,price)
    stocks.append(holding)

stocks.sort()
for s in stocks:
    print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total

77
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Sample Output

shell % python portfolio.py
AAPL             50     118.22
GOOG            100     490.10
IBM              50      91.10
MSFT            200      51.23
RHT              60      23.45
SCOX            500       2.14
Total 72199.0
shell % 

78
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Interlude: List Processing

• Python is very adept at processing lists

• Any object can be placed in a list

• List comprehensions process list data
>>> x = [1, 2, 3, 4]
>>> a = [2*i for i in x]
>>> a
[2, 4, 6, 8]
>>> 
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• This is shorthand for this code:
a = []
for i in x:
    a.append(2*i)
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Interlude: List Filtering

• List comprehensions with a condition
>>> x = [1, 2, -3, 4, -5]
>>> a = [2*i for i in x if i > 0]
>>> a
[2, 4, 8]
>>> 
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• This is shorthand for this code:
a = []
for i in x:
    if i > 0:
        a.append(2*i)
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Interlude: List Comp.

• General form of list comprehensions

a = [expression for i in s if condition ]
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• Which is shorthand for this:

a = []
for i in s:
    if condition:
        a.append(expression)
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Historical Digression

• List comprehensions come from Haskell

a = [x*x for x in s if x > 0]    # Python

a = [x*x | x <- s, x > 0]        # Haskell
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• And this is motivated by sets (from math)

a = { x2 | x ! s,  x > 0 }

• But most Python programmers would 
probably just view this as a "cool shortcut"
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Big Idea: Being Declarative

• List comprehensions encourage a more 
"declarative" style of programming when 
processing sequences of data.

• Data can be manipulated by simply "declaring" 
a series of statements that perform various 
operations on it.

83
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A Declarative Example

# portfolio.py

lines  = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

stocks.sort()
for s in stocks:
    print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total

84
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Files as a Sequence

# portfolio.py

lines  = open("portfolio.dat")

fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

stocks.sort()
for s in stocks:
    print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total
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files are sequences of lines
'IBM     50     91.1\n'
'MSFT   200     51.23\n'
...
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A List of Fields

# portfolio.py

lines  = open("portfolio.dat")
fields = [line.split() for line in lines]

stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

stocks.sort()
for s in stocks:
    print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total
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This statement creates a list of string fields

'IBM     50     91.10\n'
'MSFT   200     51.23\n'
...

[['IBM','50',91.10'],
 ['MSFT','200','51.23'],
 ...
]



Copyright (C) 2009, David Beazley,  http://www.dabeaz.com 1-

A List of Tuples

# portfolio.py

lines  = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

stocks.sort()
for s in stocks:
    print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total
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This creates a list of tuples with fields 
converted to numeric values

[['IBM','50',91.10'],
 ['MSFT','200','51.23'],
 ...
]

[('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]
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Programming Problem

• "Show me the money!"

Dave wants to know if he can quit his day job and 
join a band.  The file 'prices.dat' has a list of stock 
names and current share prices.  Use it to find out.

88

• Write a program that reads Dave's portfolio, 
a file of current stock prices, and computes 
the gain/loss of his portfolio.

• (Oh yeah, and be "declarative")
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Input Files

• portfolio.dat

89

IBM     50     91.10
MSFT   200     51.23
GOOG   100    490.10
AAPL    50    118.22
YHOO    75     28.34
SCOX   500      2.14
RHT     60     23.45

• prices.dat

IBM,117.88
MSFT,28.48
GE,38.75
CAT,75.54
GOOG,527.80
AA,36.48
SCOX,0.63
RHT,19.56
AAPL,136.76
YHOO,24.10
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Reading Data

90

# portvalue.py

# Read the stocks in Dave's portfolio
lines  = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

# Read the current stock prices
lines  = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

• This is using the same trick we just saw in 
the last section
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Data Structures

91

# portvalue.py

# Read the stocks in Dave's portfolio
lines  = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

# Read the current stock prices
lines  = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

prices = [
 ('IBM',117.88),
 ('MSFT',28.48),
 ('GE',38.75),
 ...
]
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Some Calculations

92

# portvalue.py

# Read the stocks in Dave's portfolio
lines  = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

# Read the current stock prices
lines  = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

initial_value = sum([s[1]*s[2] for s in stocks])

current_value = sum([s[1]*p[1] for s in stocks

                                   for p in prices

                                       if s[0] == p[0]])

print "Gain", current_value - initial_value
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Some Calculations

93

# portvalue.py

# Read the stocks in Dave's portfolio
lines  = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

# Read the current stock prices
lines  = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

initial_value = sum([s[1]*s[2] for s in stocks])

current_value = sum([s[1]*p[1] for s in stocks
                                   for p in prices
                                       if s[0] == p[0]])

print "Gain", current_value - initial_value

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

prices = [
 ('IBM',117.88),
 ('MSFT',28.48),
 ('GE',38.75),
 ...
]
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Some Calculations

94

# portvalue.py

# Read the stocks in Dave's portfolio
lines  = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

# Read the current stock prices
lines  = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

initial_value = sum([s[1]*s[2] for s in stocks])
current_value = sum([s[1]*p[1] for s in stocks

                                   for p in prices

                                       if s[0] == p[0]])

print "Gain", current_value - initial_value

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

prices = [
 ('IBM',117.88),
 ('MSFT',28.48),
 ('GE',38.75),
 ...
]
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Some Calculations

95

# portvalue.py

# Read the stocks in Dave's portfolio
lines  = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

# Read the current stock prices
lines  = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

initial_value = sum([s[1]*s[2] for s in stocks])
current_value = sum([s[1]*p[1] for s in stocks

                                   for p in prices

                                       if s[0] == p[0]])

print "Gain", current_value - initial_value

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

prices = [
 ('IBM',117.88),
 ('MSFT',28.48),
 ('GE',38.75),
 ...
]
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Some Calculations

96

# portvalue.py

# Read the stocks in Dave's portfolio
lines  = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

# Read the current stock prices
lines  = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

initial_value = sum([s[1]*s[2] for s in stocks])
current_value = sum([s[1]*p[1] for s in stocks

                                   for p in prices

                                       if s[0] == p[0]])

print "Gain", current-value - initial_value

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

prices = [
 ('IBM',117.88),
 ('MSFT',28.48),
 ('GE',38.75),
 ...
]

Joining two lists on a common field
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Commentary

• The similarity between list comprehensions 
and database queries in SQL is striking

• Both are operating on sequences of data 
(items in a list, rows in a database table).

• If you are familiar with databases, list 
processing operations in Python are 
somewhat similar.

97

Copyright (C) 2009, David Beazley,  http://www.dabeaz.com 1-

Part 5

98

Python Dictionaries
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Segue: Unordered Data

• All examples have used "ordered" data

• Sequence of lines in a file

• Sequence of fields in a line

• Sequence of stocks in a portfolio

• What about unordered data?

99
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Dictionaries
• A hash table or associative array

• Example:  A table of stock prices
prices = {
   'IBM'  : 117.88,
   'MSFT' : 28.48,
   'GE'   : 38.75,
   'CAT'  : 75.54,
   'GOOG' : 527.80
}

100

• Allows random access using key names
>>> prices['GE']              # Lookup
38.75
>>> prices['GOOG'] = 528.50   # Assignment
>>> 
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Dictionaries
• Dictionaries are useful for data structures

• Named fields
stock = {
   'name'   : 'GOOG',
   'shares' : 100,
   'price'  : 490.10
}

101

• Example use
>>> cost = stock['shares']*stock['price']
>>> cost
49010.0
>>>
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Programming Problem

• "Show me the money!" - Part Deux

Dave wants to know if he can quit his day job and 
join a band.  The file 'prices.dat' has a list of stock 
names and current share prices.  Use it to find out.

102

• Write a program that reads Dave's portfolio, 
the file of current stock prices, and 
computes the gain/loss of his portfolio.

• Use dictionaries
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Solution : Part I

# portvalue2.py
# Compute the value of Dave's portfolio

stocks = []
for line in open("portfolio.dat"):
    fields = line.split()
    record = {
        'name'   : fields[0],
        'shares' : int(fields[1]),
        'price'  : float(fields[2])
    }
    stocks.append(record)

103

• Creating a list of stocks in the portfolio
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Dictionary Data Structures

# portvalue2.py
# Compute the value of Dave's portfolio

stocks = []
for line in open("portfolio.dat"):
    fields = line.split()
    record = {
        'name'   : fields[0],

        'shares' : int(fields[1]),

        'price'  : float(fields[2])

    }

    stocks.append(record)
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Each stock is a dict

record = {
  'name'   : 'IBM',
  'shares' : 50
  'price'  : 91.10 
}
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Lists of Dictionaries

# portvalue2.py
# Compute the value of Dave's portfolio

stocks = []

for line in open("portfolio.dat"):
    fields = line.split()
    record = {
        'name'   : fields[0],
        'shares' : int(fields[1]),
        'price'  : float(fields[2])
    }
    stocks.append(record)
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• A list of objects with "named fields."

stocks = [
   {'name'   :'IBM',
    'shares' : 50,
    'price'  : 91.10 },
   {'name'   :'MSFT',
    'shares' : 200,
    'price'  : 51.23 },
   ...
]

stocks[1]   {'name'   : 'MSFT',
             'shares' : 200,
             'price'  : 51.23}

stocks[1]['shares']    200

Example:
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Solution : Part 2
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prices = {}
for line in open("prices.dat"):
    fields = line.split(',')
    prices[fields[0]] = float(fields[1])

• Creating a dictionary of current prices

• Example:
prices   {
   'GE'   : 38.75,
   'AA'   : 36.48,
   'IBM'  : 117.88,
   'AAPL' : 136.76,
   ...
}
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Solution : Part 3
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initial = sum([s['shares']*s['price']
                 for s in stocks])

current = sum([s['shares']*prices[s['name']]
                    for s in stocks])

print "Current value", current
print "Gain", current - initial

• Calculating portfolio value and gain

• You will note that using dictionaries tends to 
lead to more readable code (the key names 
are more descriptive than numeric indices)
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Solution : Part 3
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initial = sum([s['shares']*s['price']
                 for s in stocks])

current = sum([s['shares']*prices[s['name']]

                    for s in stocks])

print "Current value", current
print "Gain", current - initial

• Calculating portfolio value and gain

Fast price lookup
prices   {
   'GE'   : 38.75,
   'AA'   : 36.48,
   'IBM'  : 117.88,
   'AAPL' : 136.76,
   ...
}

s = {
  'name'   : 'IBM',
  'shares' : 50
  'price'  : 91.10 
}
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More on Dictionaries
• Getting an item

x = prices['IBM']
y = prices.get('IBM',0.0)  # w/default if not found
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• Adding or modifying an item

• Membership test (in operator)

prices['AAPL'] = 145.14

• Deleting an item
del prices['SCOX']

if 'GOOG' in prices:
    x = prices['GOOG']
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More on Dictionaries
• Number of items in a dictionary

n = len(prices)
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• Getting a list of all keys (unordered)

• Getting a list of (key,value) tuples

names = list(prices)
names = prices.keys()

• Getting a list of all values (unordered)
prices = prices.values()

data = prices.items()
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The Story So Far

• Primitive data types:  Integers, Floats, Strings

• Compound data: Tuples

• Sequence data:  Lists

• Unordered data: Dictionaries

111
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The Story So Far

• Powerful support for iteration

• Useful data processing primitives (list 
comprehensions, generator expressions)

• Bottom line:

112

Significant tasks can be accomplished 
doing nothing more than manipulating 
simple Python objects (lists, tuples, dicts)
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Part 6
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Some Subtle Details
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Object Mutability

• Python datatypes fall into two categories

• Immutable (can't be changed)

• Mutable (can be changed)

• Mutable: Lists, Dictionaries

• Immutable: Numbers, strings, tuples

• All of this ties into memory management 
(which is why we would care about such a 
seemingly low-level implementation detail)

114
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Variable Assignment

• Variables in Python are names for values

• A variable name does not represent a fixed 
memory location into which values are 
stored (like C, C++, Fortran, etc.)

• Assignment is just a naming operation

115
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Variables and Values
• At any time, a variable can be redefined to 

refer to a new value

a = 42

...

a = "Hello"

42"a"

• Variables are not restricted to one data type

• Assignment doesn't overwrite the previous 
value (e.g., copy over it in memory)

• It just makes the name point elsewhere
116

"Hello""a"
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Names, Values, Types
• Names do not have a "type"--it's just a name

• However, values do have an underlying type

>>> a = 42
>>> b = "Hello World"
>>> type(a)
<type 'int'>
>>> type(b)
<type 'str'>

• type() function will tell you what it is

• The type name is usually a function that 
creates or converts a value to that type

>>> str(42)
'42'

117
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Reference Counting
• Variable assignment never copies anything!

• Instead, it just updates a reference count

a = 42
b = a
c = [1,2]
c.append(b)

42"a"

"b"

"c"

ref = 3

[x, x, x]

• So, different variables might be referring to the 
same object (check with the is operator)
>>> a is b
True
>>> a is c[2]
True
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Reference Counting
• Reassignment never overwrites memory, so you 

normally don't notice any of this sharing

a = 42
b = a

42

"a" ref = 2

• When you reassign a variable, the name is just 
made to point to the new value.

a = 37 42

"a"

ref = 1

37

ref = 1
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"b"

"b"
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The Hidden Danger
• "Copying" mutable objects such as lists and dicts

>>> a = [1,2,3,4]
>>> b = a
>>> b[2] = -10
>>> a
[1,2,-10,4]

[1,2,-10,4]
"a"

"b"

• Changes affect both variables!

• Reason:  Different variable names are 
referring to exactly the same object

• Yikes!
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Making a Copy
• You have to take special steps to copy data

>>> a = [2,3,[100,101],4]
>>> b = list(a)             # Make a copy
>>> a is b
False

• It's a new list, but the list items are shared

>>> a[2].append(102)
>>> b[2]
[100,101,102]
>>> 100 101 1022 3 4

a

b
This inner list is
still being shared
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• Known as a "shallow copy"
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Deep Copying

• Use the copy module

>>> a = [2,3,[100,101],4]
>>> import copy
>>> b = copy.deepcopy(a)
>>> a[2].append(102)
>>> b[2]
[100,101]
>>>

• Sometimes you need to makes a copy of an 
object and all objects contained within it
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Part 7
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Dealing with Errors
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Error Handling Problems

• A common problem that arrises with data 
processing is dealing with bad input

• For example, a bad input field would crash 
a lot of the scripts we've written so far
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Exceptions

• In Python, errors are reported as exceptions

• Causes the program to stop

• Example:

>>> prices = { 'IBM' : 91.10,
...            'GOOG' : 490.10 }
>>> prices['SCOX']
Traceback (most recent call last):

  File "<stdin>", line 1, in ?

KeyError: 'SCOX'

>>>

Exception

125
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Builtin-Exceptions
• About two-dozen built-in exceptions

ArithmeticError
AssertionError
EnvironmentError
EOFError
ImportError
IndexError
KeyboardInterrupt
KeyError
MemoryError
NameError
ReferenceError
RuntimeError
SyntaxError
SystemError
TypeError
ValueError

126

• Consult reference
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Exceptions

• To catch, use try-except
try:
    print prices["SCOX"]
except KeyError:
    print "No such name"

• To raise an exception, use raise
raise RuntimeError("What a kerfuffle")
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• Exceptions can be caught and handled
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The End of Part 1

• Python has a small set of very useful datatypes 
(numbers, strings, tuples, lists, and dictionaries)

• There are very powerful operations for 
manipulating data

• You write scripts that do useful things using 
nothing but these basic primitives

• In Part 2, we'll see how to organize your code
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