
Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

The Python
Programming Language

1

Presented at USENIX Technical Conference
June 14, 2009

David M. Beazley
http://www.dabeaz.com

(Part I - Introducing Python)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Course Overview

• An overview of Python in two acts

• Part I : Writing scripts and
manipulating data

• Part II : Getting organized (functions,
modules, objects)

• It's not a comprehensive reference, but
there will be a lot of examples and topics
to give you a taste of what Python
programming is all about

2

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Prerequisites

• I'm going to assume that...

• you have written programs

• you know about basic data structures

• you know what a function is

• you know about basic system concepts
(files, I/O, processes, threads, network, etc.)

• I do not assume that you know Python

3

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

My Background

• C/assembler programming

• Started using Python in 1996 as a control
language for physics software running on
supercomputers at Los Alamos.

• Author: "Python Essential Reference"

• Developer of several open-source packages

• Currently working on parsing/compiler
writing tools for Python.

4

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

What is Python?

• An interpreted, dynamically typed
programming language.

• In other words: A language that's similar to
Perl, Ruby, Tcl, and other so-called "scripting
languages."

• Created by Guido van Rossum around 1990.

• Named in honor of Monty Python

5

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Why was Python Created?

6

"My original motivation for creating Python was
the perceived need for a higher level language
in the Amoeba [Operating Systems] project. I
realized that the development of system
administration utilities in C was taking too long.
Moreover, doing these things in the Bourne
shell wouldn't work for a variety of reasons. ...
So, there was a need for a language that would
bridge the gap between C and the shell."

- Guido van Rossum

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Important Influences

• C (syntax, operators, etc.)

• ABC (syntax, core data types, simplicity)

• Unix ("Do one thing well")

• Shell programming (but not the syntax)

• Lisp, Haskell, and Smalltalk (later features)

7

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Some Uses of Python

• Text processing/data processing

• Application scripting

• Systems administration/programming

• Internet programming

• Graphical user interfaces

• Testing

• Writing quick "throw-away" code

8

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

More than "Scripting"

• Although Python is often used for "scripting",
it is a general purpose programming language

• Major applications are written in Python

• Large companies you have heard of are using
hundreds of thousands of lines of Python.

9

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Part 1

10

Getting Started

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Where to get Python?

• Site for downloads, community links, etc.

• Current production version: Python-2.6.2

• Supported on virtually all platforms

11

http://www.python.org

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Support Files

• Program files, examples, and datafiles for this
tutorial are available here:

12

http://www.dabeaz.com/usenix2009/pythonprog/

• Please go there and follow along

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Running Python (Unix)

• From the shell
shell % python
Python 2.5.1 (r251:54869, Apr 18 2007, 22:08:04)
[GCC 4.0.1 (Apple Computer, Inc. build 5367)] on darwin
Type "help", "copyright", "credits" or "license"
>>>

• Integrated Development Environment (IDLE)

shell % idle or

13

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Running Python (win)

• Start Menu (IDLE or PythonWin)

14

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python Interpreter

• All programs execute in an interpreter

• If you give it a filename, it interprets the
statements in that file in order

• Otherwise, you get an "interactive" mode
where you can experiment

• There is no compilation

15

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Interactive Mode
• Read-eval loop

>>> print "hello world"
hello world
>>> 37*42
1554
>>> for i in range(5):
... print i
...
0
1
2
3
4
>>>

• Executes simple statements typed in directly

• This is one of the most useful features

16

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Creating Programs

• Programs are put in .py files
helloworld.py
print "hello world"

• Source files are simple text files

• Create with your favorite editor (e.g., emacs)

• Note: There may be special editing modes

• There are many IDEs (too many to list)

17

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Creating Programs
• Creating a new program in IDLE

18

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Creating Programs
• Editing a new program in IDLE

19

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Creating Programs
• Saving a new Program in IDLE

20

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Running Programs

• In production environments, Python may be
run from command line or a script

• Command line (Unix)
shell % python helloworld.py
hello world
shell %

• Command shell (Windows)

C:\Somewhere>c:\python26\python helloworld.py
hello world
C:\Somewhere>

21

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Running Programs (IDLE)
• Select "Run Module" (F5)

• Will see output in IDLE shell window

22

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Part 2

23

Python 101 - A First Program

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

A Sample Program
• Dave's Mortgage

Dave has taken out a $500,000 mortgage from
Guido's Mortgage, Stock, and Viagra trading
corporation. He got an unbelievable rate of 4% and a
monthly payment of only $499. However, Guido, being
kind of soft-spoken, didn't tell Dave that after 2 years,
the rate changes to 9% and the monthly payment
becomes $3999.

24

• Question: How much does Dave pay and
how many months does it take?

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

mortgage.py
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:
 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09
 payment = 3999

print "Total paid", total_paid
print "Months", months

25

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Statements
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:
 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09
 payment = 3999

print "Total paid", total_paid
print "Months", months

26

Each statement appears
on its own line

No semicolons

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Comments
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:
 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09
 payment = 3999

print "Total paid", total_paid
print "Months", months

27

starts a comment which
extends to the end of the line

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Variables
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:
 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09
 payment = 3999

print "Total paid", total_paid
print "Months", months

28

Variables are declared by
assigning a name to a value.

• Same name rules as C
 ([a-zA-Z_][a-zA-Z0-9_]*)

• You do not declare types
 like int, float, string, etc.

• Type depends on value

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Keywords
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:
 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09
 payment = 3999

print "Total paid", total_paid
print "Months", months

29

Python has a small set of
keywords and statements

Keywords are C-like
and
assert

break

class
continue

def
del
elif

else

except
exec
finally
for

from
global
if

import
in
is
lambda
not
or
pass
print

raise
return

try
while

yield

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Looping
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:

 principle = principle*(1+rate/12) - payment

 total_paid += payment

 months += 1

 if months == 24:

 rate = 0.09

 payment = 3999

print "Total paid", total_paid
print "Months", months

30

while executes a loop as
long as a condition is True

loop body denoted
by indentation

while expression:
 statements
 ...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Conditionals
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:
 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09

 payment = 3999

print "Total paid", total_paid
print "Months", months

31

if-elif-else checks a condition

 body of conditional
denoted by indentation

if expression:
 statements
 ...
elif expression:
 statements
 ...
else:
 statements
 ...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Indentation
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:

 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09
 payment = 3999

print "Total paid", total_paid
print "Months", months

32

: indicates that an indented
block will follow

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Indentation
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:

 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09
 payment = 3999

print "Total paid", total_paid
print "Months", months

33

Python only cares about consistent
indentation in the same block

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Primitive Types
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:
 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09
 payment = 3999

print "Total paid", total_paid
print "Months", months

34

Numbers:
• Integer
• Floating point

Strings

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Expressions
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:
 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09
 payment = 3999

print "Total paid", total_paid
print "Months", months

35

Python uses conventional
syntax for operators and

expressions

Basic Operators
+ - * / // % ** << >> | & ^
< > <= >= == != and or not

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

More on Relations

• Boolean expressions: and, or, not

36

if b >= a and b <= c:
 print "b is between a and c"

if not (b < a or b > c):
 print "b is still between a and c"

• Don't use &&, ||, and ! as in C

&& and
|| or
! not

• Relations do not require surrounding ()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python 101: Output
mortgage.py

principle = 500000 # Initial principle
payment = 499 # Monthly payment
rate = 0.04 # The interest rate
total_paid = 0 # Total amount paid
months = 0 # Number of months

while principle > 0:
 principle = principle*(1+rate/12) - payment
 total_paid += payment
 months += 1
 if months == 24:
 rate = 0.09
 payment = 3999

print "Total paid", total_paid

print "Months", months

37

print writes to standard output
• Items are separated by spaces
• Includes a terminating newline
• Works with any Python object

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Running the Program
• Command line

38

shell % python mortgage.py
Total paid 2623323
Months 677
shell %

• Keeping the interpreter alive (-i option or IDLE)

shell % python -i mortgage.py
Total paid 2623323
Months 677
>>> months/12
56
>>>

• In this latter mode, you can inspect variables
and continue to type statements.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Interlude
• If you know another language, you already

know a lot of Python

• Python uses standard conventions for
statement names, variable names,
numbers, strings, operators, etc.

• There is a standard set of primitive types
such as integers, floats, and strings that look
the same as in other languages.

• Indentation is most obvious "new" feature

39

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Getting Help
• Online help is often available

• help() command (interactive mode)

• Documentation at http://www.python.org

40

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

dir() function

• dir() returns list of symbols

>>> import sys
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__',
'__name__', '__stderr__', '__stdin__', '__stdout__',
'_current_frames', '_getframe', 'api_version', 'argv',
'builtin_module_names', 'byteorder', 'call_tracing',
'callstats', 'copyright', 'displayhook', 'exc_clear',
'exc_info', 'exc_type', 'excepthook', 'exec_prefix',
'executable', 'exit', 'getcheckinterval',
 ...
'version_info', 'warnoptions']

• Useful for exploring, inspecting objects, etc.

41

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Part 3

42

Basic Datatypes and File I/O

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

More on Numbers
• Numeric Datatypes

a = True # A boolean (True or False)
b = 42 # An integer (32-bit signed)
c = 81237742123L # A long integer (arbitrary precision)
d = 3.14159 # Floating point (double precision)

43

• Integer operations that overflow become longs
>>> 3 ** 73
67585198634817523235520443624317923L
>>> a = 72883988882883812
>>> a
72883988882883812L
>>>

• Integer division truncates (for now)
>>> 5/4
1
>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

More on Strings
• String literals use several quoting styles

44

a = "Yeah but no but yeah but..."

b = 'computer says no'

c = '''
Look into my eyes, look into my eyes,
the eyes, the eyes, the eyes,
not around the eyes,
don't look around the eyes,
look into my eyes, you're under.
'''

• Standard escape sequences work (e.g., '\n')

• Triple quotes capture all literal text enclosed

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Basic String Manipulation
• Length of a string

45

n = len(s) # Number of characters in s

• String concatenation
s = "Hello"
t = "World"
a = s + t # a = "HelloWorld"

• Strings as arrays : s[n]
s = "Hello"
s[1] 'e'
s[-1] 'o'

• Slices : s[start:end]
s[1:3] "el"
s[:4] "Hell"
s[-4:] "ello"

H e l l o
0 1 2 3 4

H e l l o
0 1 2 3 4

s[1]

s[1:3]

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Type Conversion

• Converting between data types
a = int(x) # Convert x to an integer
b = long(x) # Convert x to a long
c = float(x) # Convert x to a float
d = str(x) # Convert x to a string

46

• Examples:
>>> int(3.14)
3
>>> str(3.14)
'3.14'
>>> int("0xff")
255
>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Programming Problem
• Dave's stock scheme

After watching 87 straight
hours of "Guido's Insane
Money" on his Tivo, Dave
hatched a get rich scheme and
purchased a bunch of stocks.

47

• Write a program that reads this file, prints a
report, and computes how much Dave spent
during his late night stock "binge."

INSANE
MONEY

w/ GUIDO

PY 142.34 (+8.12) JV 34.23 (-4.23) CPP 4.10 (-1.34) NET 14.12 (-0.50)

He can no longer remember the evil scheme, but
he still has the list of stocks in a file "portfolio.dat".

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

The Input File

IBM 50 91.10
MSFT 200 51.23
GOOG 100 490.10
AAPL 50 118.22
YHOO 75 28.34
SCOX 500 2.14
RHT 60 23.45

48

• Input file: portfolio.dat

• The data: Name, Shares, Price per Share

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

portfolio.py
portfolio.py

total = 0.0
f = open("portfolio.dat","r")

for line in f:
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 total += shares*price
 print "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

49

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Python File I/O
portfolio.py

total = 0.0
f = open("portfolio.dat","r")

for line in f:
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 total += shares*price
 print "%-10s %8d %10.2f" % (name,shares,price)

f.close()

print "Total", total

50

Files are modeled after C stdio.
• f = open() - opens a file
• f.close() - closes the file

Data is just a sequence of bytes

"r" - Read
"w" - Write
"a" - Append

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Reading from a File
portfolio.py

total = 0.0
f = open("portfolio.dat","r")

for line in f:

 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 total += shares*price
 print "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

51

Loops over all lines in the file.
Each line is returned as a string.

Alternative reading methods:

• f.read([nbytes])
• f.readline()
• f.readlines()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

String Processing
portfolio.py

total = 0.0
f = open("portfolio.dat","r")

for line in f:
 fields = line.split()

 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 total += shares*price
 print "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

52

Strings have various "methods."
split() splits a string into a list of strings

line = 'IBM 50 91.10\n'

fields = ['IBM', '50', '91.10']

fields = line.split()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Lists
portfolio.py

total = 0.0
f = open("portfolio.dat","r")

for line in f:
 fields = line.split()

 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 total += shares*price
 print "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

53

A 'list' is an ordered sequence
of objects. It's like an array.

fields = ['IBM', '50', '91.10']

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Types and Operators
portfolio.py

total = 0.0
f = open("portfolio.dat","r")

for line in f:
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 total += shares*price
 print "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

54

To work with data, it must be
converted to an appropriate
type (e.g., number, string, etc.)

Operators only work if objects
have "compatible" types

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

String Formatting
portfolio.py

total = 0.0
f = open("portfolio.dat","r")

for line in f:
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 total += shares*price
 print "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total cost", total

55

% operator when applied to a
string, formats it. Similar to
the C printf() function.

format string values

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Sample Output

shell % python portfolio.py
IBM 50 91.10
MSFT 200 51.23
GOOG 100 490.10
AAPL 50 118.22
YHOO 75 28.34
SCOX 500 2.14
RHT 60 23.45
Total 74324.5
shell %

56

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

More on Files

57

• Opening a file
f = open("filename","r") # Reading
g = open("filename","w") # Writing
h = open("filename","a") # Appending

• Reading
f.read([nbytes]) # Read bytes
f.readline() # Read a line
f.readlines() # Read all lines into a list

• Writing
g.write("Hello World\n") # Write text
print >>g, "Hello World" # print redirection

• Closing
f.close()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

More String Methods
s.endswith(suffix) # Check if string ends with suffix
s.find(t) # First occurrence of t in s
s.index(t) # First occurrence of t in s
s.isalpha() # Check if characters are alphabetic
s.isdigit() # Check if characters are numeric
s.islower() # Check if characters are lower-case
s.isupper() # Check if characters are upper-case
s.join(slist) # Joins lists using s as delimeter
s.lower() # Convert to lower case
s.replace(old,new) # Replace text
s.rfind(t) # Search for t from end of string
s.rindex(t) # Search for t from end of string
s.split([delim]) # Split string into list of substrings
s.startswith(prefix) # Check if string starts with prefix
s.strip() # Strip leading/trailing space
s.upper() # Convert to upper case

58

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

More on Operators
• Python has a standard set of operators

• Have different behavior depending on the
types of operands.
>>> 3 + 4 # Integer addition
7
>>> '3' + '4' # String concatenation
'34'
>>>

• This is why you must be careful to convert
values to an appropriate type.

• One difference between Python and text
processing tools (e.g., awk, perl, etc.).

59

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Part 4

60

List Processing

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

More on Lists

• A indexed sequence of arbitrary objects

fields = ['IBM','50','91.10']

• Can contain mixed types

fields = ['IBM',50, 91.10]

• Can contain other lists:

61

portfolio = [['IBM',50,91.10],
 ['MSFT',200,51.23],
 ['GOOG',100,490.10]]

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

List Manipulation
• Accessing/changing items : s[n], s[n] = val

fields = ['IBM', 50, 91.10]

name = fields[0] # name = 'IBM'
price = fields[2] # price = 91.10
fields[1] = 75 # fields = ['IBM',75,91.10]

• Slicing : s[start:end], s[start:end] = t

vals = [0, 1, 2, 3, 4, 5, 6]
vals[0:4] [0, 1, 2, 3]
vals[-2:] [5, 6]
vals[:2] [0, 1]

vals[2:4] = ['a','b','c']
vals = [0, 1, 'a', 'b', 'c', 4, 5, 6]

62

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

List Manipulation

• Length : len(s)
fields = ['IBM', 50, 91.10]
len(fields) 3

• Appending/inserting

fields.append('11/16/2007')
fields.insert(0,'Dave')

fields = ['Dave', 'IBM', 50, 91.10, '11/16/2007']

• Deleting an item

del fields[0] # fields = ['IBM',50,91.10,'11/16/2007']

63

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Some List Methods

s.append(x) # Append x to end of s
s.extend(t) # Add items in t to end of s
s.count(x) # Count occurences of x in s
s.index(x) # Return index of x in s
s.insert(i,x) # Insert x at index i
s.pop([i]) # Return element i and remove it
s.remove(x) # Remove first occurence of x
s.reverse() # Reverses items in list
s.sort() # Sort items in s in-place

64

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Programming Problem

• Dave's stock portfolio

Dave still can't remember his evil "get rich
quick" scheme, but if it involves a Python
program, it will almost certainly involve some
data structures.

65

• Write a program that reads the stocks in
'portfolio.dat' into memory. Alphabetize the
stocks and print a report. Calculate the
initial value of the portfolio.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

The Previous Program
portfolio.py

total = 0.0
f = open("portfolio.dat","r")

for line in f:
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 total += shares*price
 print "%-10s %8d %10.2f" % (name,shares,price)

f.close()
print "Total", total

66

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Simplifying the I/O
portfolio.py

total = 0.0

for line in open("portfolio.dat"):

 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 total += shares*price
 print "%-10s %8d %10.2f" % (name,shares,price)

print "Total", total

67

Opens a file,
iterates over all lines,

and closes at EOF.

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Building a Data Structure
portfolio.py

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 holding= (name,shares,price)
 stocks.append(holding)

print "Total", total

68

A list of "stocks"

Create a stock
record and append

to the stock list

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Tuples - Compound Data
portfolio.py

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 holding= (name,shares,price)
 stocks.append(holding)

print "Total", total

69

A tuple is the most primitive
compound data type (a sequence
of objects grouped together)

How to write a tuple:
t = (x,y,z)
t = x,y,z # ()'s are optional
t = () # An empty tuple
t = (x,) # A 1-item tuple

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

A List of Tuples
portfolio.py

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 holding= (name,shares,price)
 stocks.append(holding)

print "Total", total

70

stocks = [
 ('IBM', 50, 91.10),
 ('MSFT', 200, 51.23),
 ('GOOG', 100, 490.10),
 ('AAPL', 50, 118.22),
 ('SCOX', 500, 2.14),
 ('RHT', 60, 23.45)
]

stocks[2] ('GOOG',100,490.10)
stocks[2][1] 100

This works like a 2D array

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Sorting a List
portfolio.py

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 holding= (name,shares,price)
 stocks.append(holding)

stocks.sort()

print "Total", total

71

('GOOG',100,490.10)
...
('AAPL',50,118.22)

.sort() sorts a list "in-place"

Note: Tuples are compared
element-by-element

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Looping over Sequences
portfolio.py

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 holding= (name,shares,price)
 stocks.append(holding)

stocks.sort()
for s in stocks:

 print "%-10s %8d %10.2f" % s

print "Total", total

72

for statement iterates over
any object that looks like a

sequence (list, tuple, file, etc.)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Formatted I/O (again)
portfolio.py

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 holding= (name,shares,price)
 stocks.append(holding)

stocks.sort()
for s in stocks:
 print "%-10s %8d %10.2f" % s

print "Total cost", total

73

On each iteration, s is a tuple
(name,shares,price)

s = ('IBM',50,91.10)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Calculating a Total
portfolio.py

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 holding= (name,shares,price)
 stocks.append(holding)

stocks.sort()
for s in stocks:
 print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])

print "Total", total

74

Calculate the total value of the
portfolio by summing shares*price
across all of the stocks

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Sequence Reductions
portfolio.py

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 holding= (name,shares,price)
 stocks.append(holding)

stocks.sort()
for s in stocks:
 print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total

75

Useful functions for reducing data:

sum(s) - Sums items in a sequence
min(s) - Min value in a sequence
max(s) - Max value in a sequence

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

List Creation
portfolio.py

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 holding= (name,shares,price)
 stocks.append(holding)

stocks.sort()
for s in stocks:
 print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total

76

This operation creates a new list.
(known as a "list comprehension")

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ('GOOG',100,490.10),
 ('AAPL',50,118.22),
 ('SCOX',500,2.14),
 ('RHT',60,23.45)
]

[s[1]*s[2] for s in stocks] = [
 50*91.10,
 200*51.23,
 100*490.10,
 50*118.22,
 500*2.14,
 60*23.45
]

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Finished Solution
portfolio.py

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 name = fields[0]
 shares = int(fields[1])
 price = float(fields[2])
 holding= (name,shares,price)
 stocks.append(holding)

stocks.sort()
for s in stocks:
 print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total

77

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Sample Output

shell % python portfolio.py
AAPL 50 118.22
GOOG 100 490.10
IBM 50 91.10
MSFT 200 51.23
RHT 60 23.45
SCOX 500 2.14
Total 72199.0
shell %

78

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Interlude: List Processing

• Python is very adept at processing lists

• Any object can be placed in a list

• List comprehensions process list data
>>> x = [1, 2, 3, 4]
>>> a = [2*i for i in x]
>>> a
[2, 4, 6, 8]
>>>

79

• This is shorthand for this code:
a = []
for i in x:
 a.append(2*i)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Interlude: List Filtering

• List comprehensions with a condition
>>> x = [1, 2, -3, 4, -5]
>>> a = [2*i for i in x if i > 0]
>>> a
[2, 4, 8]
>>>

80

• This is shorthand for this code:
a = []
for i in x:
 if i > 0:
 a.append(2*i)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Interlude: List Comp.

• General form of list comprehensions

a = [expression for i in s if condition]

81

• Which is shorthand for this:

a = []
for i in s:
 if condition:
 a.append(expression)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Historical Digression

• List comprehensions come from Haskell

a = [x*x for x in s if x > 0] # Python

a = [x*x | x <- s, x > 0] # Haskell

82

• And this is motivated by sets (from math)

a = { x2 | x ! s, x > 0 }

• But most Python programmers would
probably just view this as a "cool shortcut"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Big Idea: Being Declarative

• List comprehensions encourage a more
"declarative" style of programming when
processing sequences of data.

• Data can be manipulated by simply "declaring"
a series of statements that perform various
operations on it.

83

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

A Declarative Example

portfolio.py

lines = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

stocks.sort()
for s in stocks:
 print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total

84

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Files as a Sequence

portfolio.py

lines = open("portfolio.dat")

fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

stocks.sort()
for s in stocks:
 print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total

85

files are sequences of lines
'IBM 50 91.1\n'
'MSFT 200 51.23\n'
...

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

A List of Fields

portfolio.py

lines = open("portfolio.dat")
fields = [line.split() for line in lines]

stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

stocks.sort()
for s in stocks:
 print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total

86

This statement creates a list of string fields

'IBM 50 91.10\n'
'MSFT 200 51.23\n'
...

[['IBM','50',91.10'],
 ['MSFT','200','51.23'],
 ...
]

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

A List of Tuples

portfolio.py

lines = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

stocks.sort()
for s in stocks:
 print "%-10s %8d %10.2f" % s

total = sum([s[1]*s[2] for s in stocks])
print "Total", total

87

This creates a list of tuples with fields
converted to numeric values

[['IBM','50',91.10'],
 ['MSFT','200','51.23'],
 ...
]

[('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Programming Problem

• "Show me the money!"

Dave wants to know if he can quit his day job and
join a band. The file 'prices.dat' has a list of stock
names and current share prices. Use it to find out.

88

• Write a program that reads Dave's portfolio,
a file of current stock prices, and computes
the gain/loss of his portfolio.

• (Oh yeah, and be "declarative")

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Input Files

• portfolio.dat

89

IBM 50 91.10
MSFT 200 51.23
GOOG 100 490.10
AAPL 50 118.22
YHOO 75 28.34
SCOX 500 2.14
RHT 60 23.45

• prices.dat

IBM,117.88
MSFT,28.48
GE,38.75
CAT,75.54
GOOG,527.80
AA,36.48
SCOX,0.63
RHT,19.56
AAPL,136.76
YHOO,24.10

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Reading Data

90

portvalue.py

Read the stocks in Dave's portfolio
lines = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

Read the current stock prices
lines = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

• This is using the same trick we just saw in
the last section

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Data Structures

91

portvalue.py

Read the stocks in Dave's portfolio
lines = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

Read the current stock prices
lines = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

prices = [
 ('IBM',117.88),
 ('MSFT',28.48),
 ('GE',38.75),
 ...
]

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Some Calculations

92

portvalue.py

Read the stocks in Dave's portfolio
lines = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

Read the current stock prices
lines = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

initial_value = sum([s[1]*s[2] for s in stocks])

current_value = sum([s[1]*p[1] for s in stocks

 for p in prices

 if s[0] == p[0]])

print "Gain", current_value - initial_value

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Some Calculations

93

portvalue.py

Read the stocks in Dave's portfolio
lines = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

Read the current stock prices
lines = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

initial_value = sum([s[1]*s[2] for s in stocks])

current_value = sum([s[1]*p[1] for s in stocks
 for p in prices
 if s[0] == p[0]])

print "Gain", current_value - initial_value

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

prices = [
 ('IBM',117.88),
 ('MSFT',28.48),
 ('GE',38.75),
 ...
]

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Some Calculations

94

portvalue.py

Read the stocks in Dave's portfolio
lines = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

Read the current stock prices
lines = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

initial_value = sum([s[1]*s[2] for s in stocks])
current_value = sum([s[1]*p[1] for s in stocks

 for p in prices

 if s[0] == p[0]])

print "Gain", current_value - initial_value

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

prices = [
 ('IBM',117.88),
 ('MSFT',28.48),
 ('GE',38.75),
 ...
]

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Some Calculations

95

portvalue.py

Read the stocks in Dave's portfolio
lines = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

Read the current stock prices
lines = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

initial_value = sum([s[1]*s[2] for s in stocks])
current_value = sum([s[1]*p[1] for s in stocks

 for p in prices

 if s[0] == p[0]])

print "Gain", current_value - initial_value

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

prices = [
 ('IBM',117.88),
 ('MSFT',28.48),
 ('GE',38.75),
 ...
]

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Some Calculations

96

portvalue.py

Read the stocks in Dave's portfolio
lines = open("portfolio.dat")
fields = [line.split() for line in lines]
stocks = [(f[0],int(f[1]),float(f[2])) for f in fields]

Read the current stock prices
lines = open("prices.dat")
fields = [line.split(',') for line in lines]
prices = [(f[0],float(f[1])) for f in fields]

initial_value = sum([s[1]*s[2] for s in stocks])
current_value = sum([s[1]*p[1] for s in stocks

 for p in prices

 if s[0] == p[0]])

print "Gain", current-value - initial_value

stocks = [
 ('IBM',50,91.10),
 ('MSFT',200,51.23),
 ...
]

prices = [
 ('IBM',117.88),
 ('MSFT',28.48),
 ('GE',38.75),
 ...
]

Joining two lists on a common field

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Commentary

• The similarity between list comprehensions
and database queries in SQL is striking

• Both are operating on sequences of data
(items in a list, rows in a database table).

• If you are familiar with databases, list
processing operations in Python are
somewhat similar.

97

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Part 5

98

Python Dictionaries

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Segue: Unordered Data

• All examples have used "ordered" data

• Sequence of lines in a file

• Sequence of fields in a line

• Sequence of stocks in a portfolio

• What about unordered data?

99

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Dictionaries
• A hash table or associative array

• Example: A table of stock prices
prices = {
 'IBM' : 117.88,
 'MSFT' : 28.48,
 'GE' : 38.75,
 'CAT' : 75.54,
 'GOOG' : 527.80
}

100

• Allows random access using key names
>>> prices['GE'] # Lookup
38.75
>>> prices['GOOG'] = 528.50 # Assignment
>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Dictionaries
• Dictionaries are useful for data structures

• Named fields
stock = {
 'name' : 'GOOG',
 'shares' : 100,
 'price' : 490.10
}

101

• Example use
>>> cost = stock['shares']*stock['price']
>>> cost
49010.0
>>>

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Programming Problem

• "Show me the money!" - Part Deux

Dave wants to know if he can quit his day job and
join a band. The file 'prices.dat' has a list of stock
names and current share prices. Use it to find out.

102

• Write a program that reads Dave's portfolio,
the file of current stock prices, and
computes the gain/loss of his portfolio.

• Use dictionaries

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Solution : Part I

portvalue2.py
Compute the value of Dave's portfolio

stocks = []
for line in open("portfolio.dat"):
 fields = line.split()
 record = {
 'name' : fields[0],
 'shares' : int(fields[1]),
 'price' : float(fields[2])
 }
 stocks.append(record)

103

• Creating a list of stocks in the portfolio

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Dictionary Data Structures

portvalue2.py
Compute the value of Dave's portfolio

stocks = []
for line in open("portfolio.dat"):
 fields = line.split()
 record = {
 'name' : fields[0],

 'shares' : int(fields[1]),

 'price' : float(fields[2])

 }

 stocks.append(record)

104

Each stock is a dict

record = {
 'name' : 'IBM',
 'shares' : 50
 'price' : 91.10
}

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Lists of Dictionaries

portvalue2.py
Compute the value of Dave's portfolio

stocks = []

for line in open("portfolio.dat"):
 fields = line.split()
 record = {
 'name' : fields[0],
 'shares' : int(fields[1]),
 'price' : float(fields[2])
 }
 stocks.append(record)

105

• A list of objects with "named fields."

stocks = [
 {'name' :'IBM',
 'shares' : 50,
 'price' : 91.10 },
 {'name' :'MSFT',
 'shares' : 200,
 'price' : 51.23 },
 ...
]

stocks[1] {'name' : 'MSFT',
 'shares' : 200,
 'price' : 51.23}

stocks[1]['shares'] 200

Example:

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Solution : Part 2

106

prices = {}
for line in open("prices.dat"):
 fields = line.split(',')
 prices[fields[0]] = float(fields[1])

• Creating a dictionary of current prices

• Example:
prices {
 'GE' : 38.75,
 'AA' : 36.48,
 'IBM' : 117.88,
 'AAPL' : 136.76,
 ...
}

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Solution : Part 3

107

initial = sum([s['shares']*s['price']
 for s in stocks])

current = sum([s['shares']*prices[s['name']]
 for s in stocks])

print "Current value", current
print "Gain", current - initial

• Calculating portfolio value and gain

• You will note that using dictionaries tends to
lead to more readable code (the key names
are more descriptive than numeric indices)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Solution : Part 3

108

initial = sum([s['shares']*s['price']
 for s in stocks])

current = sum([s['shares']*prices[s['name']]

 for s in stocks])

print "Current value", current
print "Gain", current - initial

• Calculating portfolio value and gain

Fast price lookup
prices {
 'GE' : 38.75,
 'AA' : 36.48,
 'IBM' : 117.88,
 'AAPL' : 136.76,
 ...
}

s = {
 'name' : 'IBM',
 'shares' : 50
 'price' : 91.10
}

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

More on Dictionaries
• Getting an item

x = prices['IBM']
y = prices.get('IBM',0.0) # w/default if not found

109

• Adding or modifying an item

• Membership test (in operator)

prices['AAPL'] = 145.14

• Deleting an item
del prices['SCOX']

if 'GOOG' in prices:
 x = prices['GOOG']

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

More on Dictionaries
• Number of items in a dictionary

n = len(prices)

110

• Getting a list of all keys (unordered)

• Getting a list of (key,value) tuples

names = list(prices)
names = prices.keys()

• Getting a list of all values (unordered)
prices = prices.values()

data = prices.items()

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

The Story So Far

• Primitive data types: Integers, Floats, Strings

• Compound data: Tuples

• Sequence data: Lists

• Unordered data: Dictionaries

111

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

The Story So Far

• Powerful support for iteration

• Useful data processing primitives (list
comprehensions, generator expressions)

• Bottom line:

112

Significant tasks can be accomplished
doing nothing more than manipulating
simple Python objects (lists, tuples, dicts)

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Part 6

113

Some Subtle Details

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Object Mutability

• Python datatypes fall into two categories

• Immutable (can't be changed)

• Mutable (can be changed)

• Mutable: Lists, Dictionaries

• Immutable: Numbers, strings, tuples

• All of this ties into memory management
(which is why we would care about such a
seemingly low-level implementation detail)

114

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Variable Assignment

• Variables in Python are names for values

• A variable name does not represent a fixed
memory location into which values are
stored (like C, C++, Fortran, etc.)

• Assignment is just a naming operation

115

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Variables and Values
• At any time, a variable can be redefined to

refer to a new value

a = 42

...

a = "Hello"

42"a"

• Variables are not restricted to one data type

• Assignment doesn't overwrite the previous
value (e.g., copy over it in memory)

• It just makes the name point elsewhere
116

"Hello""a"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Names, Values, Types
• Names do not have a "type"--it's just a name

• However, values do have an underlying type

>>> a = 42
>>> b = "Hello World"
>>> type(a)
<type 'int'>
>>> type(b)
<type 'str'>

• type() function will tell you what it is

• The type name is usually a function that
creates or converts a value to that type

>>> str(42)
'42'

117

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Reference Counting
• Variable assignment never copies anything!

• Instead, it just updates a reference count

a = 42
b = a
c = [1,2]
c.append(b)

42"a"

"b"

"c"

ref = 3

[x, x, x]

• So, different variables might be referring to the
same object (check with the is operator)
>>> a is b
True
>>> a is c[2]
True

118

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Reference Counting
• Reassignment never overwrites memory, so you

normally don't notice any of this sharing

a = 42
b = a

42

"a" ref = 2

• When you reassign a variable, the name is just
made to point to the new value.

a = 37 42

"a"

ref = 1

37

ref = 1

119

"b"

"b"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

The Hidden Danger
• "Copying" mutable objects such as lists and dicts

>>> a = [1,2,3,4]
>>> b = a
>>> b[2] = -10
>>> a
[1,2,-10,4]

[1,2,-10,4]
"a"

"b"

• Changes affect both variables!

• Reason: Different variable names are
referring to exactly the same object

• Yikes!

120

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Making a Copy
• You have to take special steps to copy data

>>> a = [2,3,[100,101],4]
>>> b = list(a) # Make a copy
>>> a is b
False

• It's a new list, but the list items are shared

>>> a[2].append(102)
>>> b[2]
[100,101,102]
>>> 100 101 1022 3 4

a

b
This inner list is
still being shared

121

• Known as a "shallow copy"

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Deep Copying

• Use the copy module

>>> a = [2,3,[100,101],4]
>>> import copy
>>> b = copy.deepcopy(a)
>>> a[2].append(102)
>>> b[2]
[100,101]
>>>

• Sometimes you need to makes a copy of an
object and all objects contained within it

122

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Part 7

123

Dealing with Errors

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Error Handling Problems

• A common problem that arrises with data
processing is dealing with bad input

• For example, a bad input field would crash
a lot of the scripts we've written so far

124

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Exceptions

• In Python, errors are reported as exceptions

• Causes the program to stop

• Example:

>>> prices = { 'IBM' : 91.10,
... 'GOOG' : 490.10 }
>>> prices['SCOX']
Traceback (most recent call last):

 File "<stdin>", line 1, in ?

KeyError: 'SCOX'

>>>

Exception

125

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Builtin-Exceptions
• About two-dozen built-in exceptions

ArithmeticError
AssertionError
EnvironmentError
EOFError
ImportError
IndexError
KeyboardInterrupt
KeyError
MemoryError
NameError
ReferenceError
RuntimeError
SyntaxError
SystemError
TypeError
ValueError

126

• Consult reference

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

Exceptions

• To catch, use try-except
try:
 print prices["SCOX"]
except KeyError:
 print "No such name"

• To raise an exception, use raise
raise RuntimeError("What a kerfuffle")

127

• Exceptions can be caught and handled

Copyright (C) 2009, David Beazley, http://www.dabeaz.com 1-

The End of Part 1

• Python has a small set of very useful datatypes
(numbers, strings, tuples, lists, and dictionaries)

• There are very powerful operations for
manipulating data

• You write scripts that do useful things using
nothing but these basic primitives

• In Part 2, we'll see how to organize your code

128

